91 | ||
32 | ||
7 | ||
2 | ||
1 |
1 | ||
4 | ||
2 | ||
2 | ||
5 | ||
7 | ||
4 | ||
5 | ||
9 | ||
12 | ||
23 | ||
23 | ||
8 | ||
2 | ||
1 |
64 | ||
43 | ||
16 | ||
15 | ||
8 | ||
7 | ||
6 | ||
1 |
52 | ||
36 | ||
32 | ||
25 | ||
22 | ||
20 | ||
19 | ||
12 | ||
12 | ||
11 | ||
11 | ||
10 | ||
9 | ||
9 | ||
8 | ||
8 | ||
8 | ||
8 | ||
8 | ||
8 |
12 | ||
9 | ||
8 | ||
7 | ||
6 | ||
5 | ||
5 | ||
4 | ||
3 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
1 | ||
1 |
A specific mechanism for nonspecific activation in reporter-gene assays.Auld DS, Thorne N, Nguyen T, Inglese JACS Chem. Biol. , (3), 463-70, 2008. Article Pubmed The importance of bioluminescence in enabling a broad range of high-throughput screening (HTS) assay formats is evidenced by widespread use in industry and academia. Therefore, understanding the mechanisms by which reporter enzyme activity can be modulated by small molecules is critical to the interpretation of HTS data. In this Perspective, we provide evidence for stabilization of luciferase by inhibitors in cell-based luciferase reporter-gene assays resulting in the counterintuitive phenomenon of signal activation. These data were derived from our analysis of luciferase inhibitor compound structures and their prevalence in the Molecular Libraries Small Molecule Repository using 100 HTS experiments available in PubChem. Accordingly, we found an enrichment of luciferase inhibitors in luciferase reporter-gene activation assays but not in assays using other reporters. In addition, for several luciferase inhibitor chemotypes, we measured reporter stabilization and signal activation in cells that paralleled the inhibition determined using purified luciferase to provide further experimental support for these contrasting effects.
|
A high throughput fluorescence polarization assay for inhibitors of the GoLoco motif/G-alpha interaction.Kimple AJ, Yasgar A, Hughes M, Jadhav A, Willard FS, Muller RE, Austin C, Inglese J, Ibeanu GC, Siderovski DP, Simeonov AComb. Chem. High Throughput Screen. , (11), 396-409, 2008. Pubmed The GoLoco motif is a short Galpha-binding polypeptide sequence. It is often found in proteins that regulate cell-surface receptor signaling, such as RGS12, as well as in proteins that regulate mitotic spindle orientation and force generation during cell division, such as GPSM2/LGN. Here, we describe a high throughput fluorescence polarization (FP) assay using fluorophore-labeled GoLoco motif peptides for identifying inhibitors of the GoLoco motif interaction with the G-protein alpha subunit Galpha (i1). The assay exhibits considerable stability over time and is tolerant to DMSO up to 5%. The Z'-factors for robustness of the GPSM2 and RGS12 GoLoco motif assays in a 96-well plate format were determined to be 0.81 and 0.84, respectively; the latter assay was run in a 384-well plate format and produced a Z'-factor of 0.80. To determine the screening factor window (Z-factor) of the RGS12 GoLoco motif screen using a small molecule library, the NCI Diversity Set was screened. The Z-factor was determined to be 0.66, suggesting that this FP assay would perform well when developed for 1,536-well format and scaled up to larger libraries. We then miniaturized to a 4 microL final volume a pair of FP assays utilizing fluorescein- (green) and rhodamine- (red) labeled RGS12 GoLoco motif peptides. In a fully-automated run, the Sigma-Aldrich LOPAC(1280) collection was screened three times with every library compound being tested over a range of concentrations following the quantitative high throughput screening (qHTS) paradigm; excellent assay performance was noted with average Z-factors of 0.84 and 0.66 for the green- and red-label assays, respectively.
|
Compound Management for Quantitative High-Throughput Screening.Yasgar A, Shinn P, Jadhav A, Auld D, Michael S, Zheng W, Austin C, Inglese J, Simeonov AJALA Charlottesv Va , (13), 79-89, 2008. Article Pubmed An efficient and versatile Compound Management operation is essential for the success of all downstream processes in high-throughput screening (HTS) and small molecule lead development. Staff, equipment, and processes need to be not only reliable, but remain flexible and prepared to incorporate paradigm changes. In the present report, we describe a system and associated processes which enable handling of compounds for both screening and follow-up purposes at the NIH Chemical Genomics Center (NCGC), a recently-established HTS and probe development center within the Molecular Libraries Initiative of the NIH Roadmap. Our screening process, termed quantitative HTS (qHTS), involves assaying the complete compound library, currently containing >200,000 members, at a series of dilutions to construct a full concentration-response profile. As such, Compound Management at the NCGC has been uniquely tasked to prepare, store, register, and track a vertically-developed plate dilution series (i.e., inter-plate titrations) in the 384-well format. These are compressed into a series of 1,536-well plates and are registered to track all subsequent plate storage. Here, we present details on the selection of equipment to enable automated, reliable and parallel compound manipulation in 384- and 1,536-well formats, protocols for preparation of inter-plate dilution series for qHTS, as well as qHTS-specific processes and issues.
|
A fluorescence-based thiol quantification assay for ultra-high-throughput screening for inhibitors of coenzyme A production.Chung CC, Ohwaki K, Schneeweis JE, Stec E, Varnerin JP, Goudreau PN, Chang A, Cassaday J, Yang L, Yamakawa T, Kornienko O, Hodder P, Inglese J, Ferrer-Alegre M, Strulovici B, Kusunoki J, Tota MR, Takagi TAssay Drug Dev Technol , (6), 361-74, 2008. Article Pubmed Here we report the development and miniaturization of a cell-free enzyme assay for ultra-high-throughput screening (uHTS) for inhibitors of two potential drug targets for obesity and cancer: fatty acid synthase (FAS) and acetyl-coenzyme A (CoA) carboxylase (ACC) 2. This assay detects CoA, a product of the FAS-catalyzed condensation of malonyl-CoA and acetyl-CoA. The free thiol of CoA can react with 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM), a profluorescent coumarin maleimide derivative that becomes fluorescent upon reaction with thiols. FAS produces long-chain fatty acid and CoA from the condensation of malonyl-CoA and acetyl-CoA. In our FAS assay, CoA released in the FAS reaction forms a fluorescence adduct with CPM that emits at 530 nm when excited at 405 nm. Using this detection method for CoA, we measured the activity of sequential enzymes in the fatty acid synthesis pathway to develop an ACC2/FAS-coupled assay where ACC2 produces malonyl-CoA from acetyl-CoA. We miniaturized the FAS and ACC2/FAS assays to 3,456- and 1,536-well plate format, respectively, and completed uHTSs for small molecule inhibitors of this enzyme system. This report shows the results of assay development, miniaturization, and inhibitor screening for these potential drug targets.
|
Measurement of cell membrane integrity has been widely used to assess chemical cytotoxity. Several assays are available for determining cell membrane integrity including differential labeling techniques using neutral red and trypan blue dyes or fluorescent compounds such as propidium iodide. Other common methods for assessing cytotoxicity are enzymatic "release" assays which measure the extra-cellular activities of lactate dehydrogenase (LDH), adenylate kinase (AK), or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in culture medium. However, all these assays suffer from several practical limitations, including multiple reagent additions, scalability, low sensitivity, poor linearity, or requisite washes and medium exchanges. We have developed a new cytotoxicity assay which measures the activity of released intracellular proteases as a result of cell membrane impairment. It allows for a homogenous, one-step addition assay with a luminescent readout. We have optimized and miniaturized this assay into a 1536-well format, and validated it by screening a library of known compounds from the National Toxicology Program (NTP) using HEK 293 and human renal mesangial cells by quantitative high-throughput screening (qHTS). Several known and novel membrane disrupters were identified from the library, which indicates that the assay is robust and suitable for large scale library screening. This cytotoxicity assay, combined with the qHTS platform, allowed us to quickly and efficiently evaluate compound toxicities related to cell membrane integrity.
|
Characterization of chemical libraries for luciferase inhibitory activity.Auld DS, Southall N, Jadhav A, Johnson RL, Diller DJ, Simeonov A, Austin C, Inglese JJ. Med. Chem. , (51), 2372-86, 2008. Article Pubmed To aid in the interpretation of high-throughput screening (HTS) results derived from luciferase-based assays, we used quantitative HTS, an approach that defines the concentration-response behavior of each library sample, to profile the ATP-dependent luciferase from Photinus pyralis against more than 70,000 samples. We found that approximately 3% of the library was active, containing only compounds with inhibitory concentration-responses, of which 681 (0.9%) exhibited IC 50 < 10 microM. Representative compounds were shown to inhibit purified P. pyralis as well as several commercial luciferase-based detection reagents but were found to be largely inactive against Renilla reniformis luciferase. Light attenuation by the samples was also examined and found to be more prominent in the blue-shifted bioluminescence produced by R. reniformis luciferase than in the bioluminescence produced by P. pyralis luciferase. We describe the structure-activity relationship of the luciferase inhibitors and discuss the use of this data in the interpretation of HTS results and configuration of luciferase-based assays.
|
Fluorescence spectroscopic profiling of compound libraries.Simeonov A, Jadhav A, Thomas C, Wang Y, Huang R, Southall N, Shinn P, Smith J, Austin C, Auld DS, Inglese JJ. Med. Chem. , (51), 2363-71, 2008. Article Pubmed Chromo/fluorophoric properties often accompany the heterocyclic scaffolds and impurities that comprise libraries used for high-throughput screening (HTS). These properties affect assay outputs obtained with optical detection, thus complicating analysis and leading to false positives and negatives. Here, we report the fluorescence profile of more than 70,000 samples across spectral regions commonly utilized in HTS. The quantitative HTS paradigm was utilized to test each sample at seven or more concentrations over a 4-log range in 1,536-well format. Raw fluorescence was compared with fluorophore standards to compute a normalized response as a function of concentration and spectral region. More than 5% of library members were brighter than the equivalent of 10 nM 4-methyl umbelliferone, a common UV-active probe. Red-shifting the spectral window by as little as 100 nm was accompanied by a dramatic decrease in autofluorescence. Native compound fluorescence, fluorescent impurities, novel fluorescent compounds, and the utilization of fluorescence profiling data are discussed.
|
Identification of oxadiazoles as new drug leads for the control of schistosomiasis.Sayed AA, Simeonov A, Thomas C, Inglese J, Austin C, Williams DLNat. Med. , (14), 407-12, 2008. Article Pubmed Treatment for schistosomiasis, which is responsible for more than 280,000 deaths annually, depends almost exclusively on praziquantel. Millions of people are treated annually with praziquantel, and drug-resistant parasites thus are likely to evolve. Phosphinic amides and oxadiazole 2-oxides, identified from a quantitative high-throughput screen, were shown to inhibit a parasite enzyme, thioredoxin glutathione reductase (TGR), with activities in the low micromolar to low nanomolar range. Incubation of parasites with these compounds led to rapid inhibition of TGR activity and parasite death. The activity of the oxadiazole 2-oxides was associated with a donation of nitric oxide. Treatment of schistosome-infected mice with 4-phenyl-1,2,5-oxadiazole-3-carbonitrile-2-oxide led to marked reductions in worm burdens from treatments against multiple parasite stages and egg-associated pathologies. The compound was active against the three major schistosome species infecting humans. These protective effects exceed benchmark activity criteria set by the World Health Organization for lead compound development for schistosomiasis.
|
Compound cytotoxicity profiling using quantitative high-throughput screening.Xia M, Huang R, Witt KL, Southall N, Fostel J, Cho MH, Jadhav A, Smith CS, Inglese J, Portier CJ, Tice RR, Austin CEnviron. Health Perspect. , (116), 284-91, 2008. Article Pubmed BACKGROUND: The propensity of compounds to produce adverse health effects in humans is generally evaluated using animal-based test methods. Such methods can be relatively expensive, low-throughput, and associated with pain suffered by the treated animals. In addition, differences in species biology may confound extrapolation to human health effects.
OBJECTIVE: The National Toxicology Program and the National Institutes of Health Chemical Genomics Center are collaborating to identify a battery of cell-based screens to prioritize compounds for further toxicologic evaluation.
METHODS: A collection of 1,408 compounds previously tested in one or more traditional toxicologic assays were profiled for cytotoxicity using quantitative high-throughput screening (qHTS) in 13 human and rodent cell types derived from six common targets of xenobiotic toxicity (liver, blood, kidney, nerve, lung, skin). Selected cytotoxicants were further tested to define response kinetics.
RESULTS: qHTS of these compounds produced robust and reproducible results, which allowed cross-compound, cross-cell type, and cross-species comparisons. Some compounds were cytotoxic to all cell types at similar concentrations, whereas others exhibited species- or cell type-specific cytotoxicity. Closely related cell types and analogous cell types in human and rodent frequently showed different patterns of cytotoxicity. Some compounds inducing similar levels of cytotoxicity showed distinct time dependence in kinetic studies, consistent with known mechanisms of toxicity.
CONCLUSIONS: The generation of high-quality cytotoxicity data on this large library of known compounds using qHTS demonstrates the potential of this methodology to profile a much broader array of assays and compounds, which, in aggregate, may be valuable for prioritizing compounds for further toxicologic evaluation, identifying compounds with particular mechanisms of action, and potentially predicting in vivo biological response.
|
Comprehensive mechanistic analysis of hits from high-throughput and docking screens against beta-lactamase.Babaoglu K, Simeonov A, Irwin JJ, Nelson ME, Feng B, Thomas C, Cancian L, Costi MP, Maltby DA, Jadhav A, Inglese J, Austin C, Shoichet BKJ. Med. Chem. , (51), 2502-11, 2008. Article Pubmed High-throughput screening (HTS) is widely used in drug discovery. Especially for screens of unbiased libraries, false positives can dominate "hit lists"; their origins are much debated. Here we determine the mechanism of every active hit from a screen of 70,563 unbiased molecules against beta-lactamase using quantitative HTS (qHTS). Of the 1,274 initial inhibitors, 95% were detergent-sensitive and were classified as aggregators. Among the 70 remaining were 25 potent, covalent-acting beta-lactams. Mass spectra, counter-screens, and crystallography identified 12 as promiscuous covalent inhibitors. The remaining 33 were either aggregators or irreproducible. No specific reversible inhibitors were found. We turned to molecular docking to prioritize molecules from the same library for testing at higher concentrations. Of 16 tested, 2 were modest inhibitors. Subsequent X-ray structures corresponded to the docking prediction. Analog synthesis improved affinity to 8 microM. These results suggest that it may be the physical behavior of organic molecules, not their reactivity, that accounts for most screening artifacts. Structure-based methods may prioritize weak-but-novel chemotypes in unbiased library screens.
|