56 | ||
11 | ||
4 | ||
2 | ||
1 | ||
1 | ||
1 | ||
1 |
13 | ||
1 | ||
6 | ||
1 | ||
7 | ||
5 | ||
6 | ||
8 | ||
7 | ||
6 | ||
5 | ||
5 |
22 | ||
18 | ||
15 | ||
14 | ||
7 | ||
5 | ||
3 | ||
1 | ||
1 |
32 | ||
15 | ||
15 | ||
13 | ||
11 | ||
10 | ||
10 | ||
9 | ||
8 | ||
8 | ||
7 | ||
7 | ||
7 | ||
6 | ||
6 | ||
6 | ||
6 | ||
6 | ||
5 | ||
5 |
9 | ||
6 | ||
4 | ||
4 | ||
3 | ||
3 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo.Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, Miller TE, Nevin ZS, Kantor C, Sargent A, Quick KL, Schlatzer DM, Tang H, Papoian R, Brimacombe K, Shen M, Boxer MB, Jadhav A, Robinson AP, Podojil JR, Miller SD, Miller RH, Tesar PJNature , (522), 216-20, 2015. Article Pubmed Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients.
|
Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy.Kenny HA, Lal-Nag M, White EA, Shen M, Chiang CY, Mitra AK, Zhang Y, Curtis M, Schryver EM, Bettis S, Jadhav A, Boxer MB, Li Z, Ferrer-Alegre M, Lengyel ENat Commun , (6), 6220, 2015. Article Pubmed The tumour microenvironment contributes to cancer metastasis and drug resistance. However, most high throughput screening (HTS) assays for drug discovery use cancer cells grown in monolayers. Here we show that a multilayered culture containing primary human fibroblasts, mesothelial cells and extracellular matrix can be adapted into a reliable 384- and 1,536-multi-well HTS assay that reproduces the human ovarian cancer (OvCa) metastatic microenvironment. We validate the identified inhibitors in secondary in vitro and in vivo biological assays using three OvCa cell lines: HeyA8, SKOV3ip1 and Tyk-nu. The active compounds directly inhibit at least two of the three OvCa functions: adhesion, invasion and growth. In vivo, these compounds prevent OvCa adhesion, invasion and metastasis, and improve survival in mouse models. Collectively, these data indicate that a complex three-dimensional culture of the tumour microenvironment can be adapted for quantitative HTS and may improve the disease relevance of assays used for drug screening.
|
Structure activity relationships of human galactokinase inhibitors.Liu L, Tang M, Walsh MJ, Brimacombe K, Pragani R, Tanega C, Rohde JM, Baker H, Fernandez E, Blackman B, Bougie JM, Leister WH, Auld DS, Shen M, Lai K, Boxer MBBioorg. Med. Chem. Lett. , (25), 721-7, 2015. Article Pubmed Classic Galactosemia is a rare inborn error of metabolism that is caused by deficiency of galactose-1-phosphate uridyltransferase (GALT), an enzyme within the Leloir pathway that is responsible for the conversion of galactose-1-phosphate (gal-1-p) and UDP-glucose to glucose-1-phosphate and UDP-galactose. This deficiency results in elevated intracellular concentrations of its substrate, gal-1-p, and this increased concentration is believed to be the major pathogenic mechanism in Classic Galactosemia. Galactokinase (GALK) is an upstream enzyme of GALT in the Leloir pathway and is responsible for conversion of galactose and ATP to gal-1-p and ADP. Therefore, it was hypothesized that the identification of a small-molecule inhibitor of human GALK would act to prevent the accumulation of gal-1-p and offer a novel entry therapy for this disorder. Herein we describe a quantitative high-throughput screening campaign that identified a single chemotype that was optimized and validated as a GALK inhibitor.
|
Identification of ML251, a Potent Inhibitor of T. brucei and T. cruzi Phosphofructokinase.Brimacombe K, Walsh MJ, Liu L, Vásquez-Valdivieso MG, Morgan HP, McNae I, Fothergill-Gilmore LA, Michels PA, Auld DS, Simeonov A, Walkinshaw MD, Shen M, Boxer MBACS Med Chem Lett , (5), 12-7, 2014. Article Pubmed Human African Trypanosomiasis (HAT) is a severe, often fatal disease caused by the parasitic protist Trypanosoma brucei. The glycolytic pathway has been identified as the sole mechanism for ATP generation in the infective stage of these organisms, and several glycolytic enzymes, phosphofructokinase (PFK) in particular, have shown promise as potential drug targets. Herein, we describe the discovery of ML251, a novel nanomolar inhibitor of T. brucei PFK, and the structure-activity relationships within the series.
|
Research resource: modulators of glucocorticoid receptor activity identified by a new high-throughput screening assay.Blackford JA, Brimacombe K, Dougherty EJ, Pradhan M, Shen M, Li Z, Auld DS, Chow CC, Austin C, Simons SSMol. Endocrinol. , (28), 1194-206, 2014. Article Pubmed Glucocorticoid steroids affect almost every type of tissue and thus are widely used to treat a variety of human pathological conditions. However, the severity of numerous side effects limits the frequency and duration of glucocorticoid treatments. Of the numerous approaches to control off-target responses to glucocorticoids, small molecules and pharmaceuticals offer several advantages. Here we describe a new, extended high-throughput screen in intact cells to identify small molecule modulators of dexamethasone-induced glucocorticoid receptor (GR) transcriptional activity. The novelty of this assay is that it monitors changes in both GR maximal activity (A(max)) and EC(50) (the position of the dexamethasone dose-response curve). Upon screening 1280 chemicals, 10 with the greatest changes in the absolute value of A(max) or EC(50) were selected for further examination. Qualitatively identical behaviors for 60% to 90% of the chemicals were observed in a completely different system, suggesting that other systems will be similarly affected by these chemicals. Additional analysis of the 10 chemicals in a recently described competition assay determined their kinetically defined mechanism and site of action. Some chemicals had similar mechanisms of action despite divergent effects on the level of the GR-induced product. These combined assays offer a straightforward method of identifying numerous new pharmaceuticals that can alter GR transactivation in ways that could be clinically useful.
|
Biochemical, cellular, and biophysical characterization of a potent inhibitor of mutant isocitrate dehydrogenase IDH1.Davis MI, Gross S, Shen M, Straley KS, Pragani R, Lea WA, Popovici-Muller J, DeLaBarre B, Artin E, Thorne N, Auld DS, Li Z, Dang L, Boxer MB, Simeonov AJ. Biol. Chem. , (289), 13717-25, 2014. Article Pubmed Two mutant forms (R132H and R132C) of isocitrate dehydrogenase 1 (IDH1) have been associated with a number of cancers including glioblastoma and acute myeloid leukemia. These mutations confer a neomorphic activity of 2-hydroxyglutarate (2-HG) production, and 2-HG has previously been implicated as an oncometabolite. Inhibitors of mutant IDH1 can potentially be used to treat these diseases. In this study, we investigated the mechanism of action of a newly discovered inhibitor, ML309, using biochemical, cellular, and biophysical approaches. Substrate binding and product inhibition studies helped to further elucidate the IDH1 R132H catalytic cycle. This rapidly equilibrating inhibitor is active in both biochemical and cellular assays. The (+) isomer is active (IC50 = 68 nm), whereas the (-) isomer is over 400-fold less active (IC50 = 29 μm) for IDH1 R132H inhibition. IDH1 R132C was similarly inhibited by (+)-ML309. WT IDH1 was largely unaffected by (+)-ML309 (IC50 >36 μm). Kinetic analyses combined with microscale thermophoresis and surface plasmon resonance indicate that this reversible inhibitor binds to IDH1 R132H competitively with respect to α-ketoglutarate and uncompetitively with respect to NADPH. A reaction scheme for IDH1 R132H inhibition by ML309 is proposed in which ML309 binds to IDH1 R132H after formation of the IDH1 R132H NADPH complex. ML309 was also able to inhibit 2-HG production in a glioblastoma cell line (IC50 = 250 nm) and had minimal cytotoxicity. In the presence of racemic ML309, 2-HG levels drop rapidly. This drop was sustained until 48 h, at which point the compound was washed out and 2-HG levels recovered.
|
Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia.Fiskus W, Saba N, Shen M, Ghias M, Liu J, Gupta SD, Chauhan L, Rao R, Gunewardena S, Schorno K, Austin C, Maddocks K, Byrd J, Melnick A, Huang P, Wiestner A, Bhalla KNCancer Res. , (74), 2520-32, 2014. Article Pubmed Chronic lymphocytic leukemia (CLL) exhibits high remission rates after initial chemoimmunotherapy, but with relapses with treatment, refractory disease is the most common outcome, especially in CLL with the deletion of chromosome 11q or 17p. In addressing the need of treatments for relapsed disease, we report the identification of an existing U.S. Food and Drug Administration-approved small-molecule drug to repurpose for CLL treatment. Auranofin (Ridaura) is approved for use in treating rheumatoid arthritis, but it exhibited preclinical efficacy in CLL cells. By inhibiting thioredoxin reductase activity and increasing intracellular reactive oxygen species levels, auranofin induced a lethal endoplasmic reticulum stress response in cultured and primary CLL cells. In addition, auranofin displayed synergistic lethality with heme oxygenase-1 and glutamate-cysteine ligase inhibitors against CLL cells. Auranofin overcame apoptosis resistance mediated by protective stromal cells, and it also killed primary CLL cells with deletion of chromosome 11q or 17p. In TCL-1 transgenic mice, an in vivo model of CLL, auranofin treatment markedly reduced tumor cell burden and improved mouse survival. Our results provide a rationale to reposition the approved drug auranofin for clinical evaluation in the therapy of CLL.
|
A panel of diverse assays to interrogate the interaction between glucokinase and glucokinase regulatory protein, two vital proteins in human disease.Rees MG, Davis MI, Shen M, Titus S, Raimondo A, Barrett A, Gloyn AL, Collins FS, Simeonov APLoS ONE , (9), e89335, 2014. Article Pubmed Recent genetic and clinical evidence has implicated glucokinase regulatory protein (GKRP) in the pathogenesis of type 2 diabetes and related traits. The primary role of GKRP is to bind and inhibit hepatic glucokinase (GCK), a critically important protein in human health and disease that exerts a significant degree of control over glucose metabolism. As activation of GCK has been associated with improved glucose tolerance, perturbation of the GCK-GKRP interaction represents a potential therapeutic target for pharmacological modulation. Recent structural and kinetic advances are beginning to provide insight into the interaction of these two proteins. However, tools to comprehensively assess the GCK-GKRP interaction, particularly in the context of small molecules, would be a valuable resource. We therefore developed three robust and miniaturized assays for assessing the interaction between recombinant human GCK and GKRP: an HTRF assay, a diaphorase-coupled assay, and a luciferase-coupled assay. The assays are complementary, featuring distinct mechanisms of detection (luminescence, fluorescence, FRET). Two assays rely on GCK enzyme activity modulation by GKRP while the FRET-based assay measures the GCK-GKRP protein-protein interaction independent of GCK enzymatic substrates and activity. All three assays are scalable to low volumes in 1536-well plate format, with robust Z' factors (>0.7). Finally, as GKRP sequesters GCK in the hepatocyte nucleus at low glucose concentrations, we explored cellular models of GCK localization and translocation. Previous findings from freshly isolated rat hepatocytes were confirmed in cryopreserved rat hepatocytes, and we further extended this study to cryopreserved human hepatocytes. Consistent with previous reports, there were several key differences between the rat and human systems, with our results suggesting that human hepatocytes can be used to interrogate GCK translocation in response to small molecules. The assay panel developed here should help direct future investigation of the GCK-GKRP interaction in these or other physiologically relevant human systems.
|
A novel class of ion displacement ligands as antagonists of the αIIbβ3 receptor that limit conformational reorganization of the receptor.Jiang J, McCoy JG, Shen M, LeClair C, Huang W, Negri A, Li J, Blue R, Harrington AW, Naini S, David G, Choi WS, Volpi E, Fernandez J, Babayeva M, Nedelman MA, Filizola M, Coller BS, Thomas CBioorg. Med. Chem. Lett. , (24), 1148-53, 2014. Article Pubmed A collection of αIIbβ3 integrin receptor antagonists possessing a unique MIDAS metal ion displacement mechanism of action is presented. Insight into these agents' structure-activity relationships, binding modality, and pharmacokinetic and pharmacodynamic profiles highlight the potential of these small molecule ion displacement ligands as attractive candidates for clinical development.
|
Identification of therapeutic candidates for chronic lymphocytic leukemia from a library of approved drugs.Shen M, Zhang Y, Saba N, Austin C, Wiestner A, Auld DSPLoS ONE , (8), e75252, 2013. Article Pubmed Chronic lymphocytic leukemia (CLL) is an adult lymphoid malignancy with a variable clinical course. There is considerable interest in the identification of new treatments, as most current approaches are not curative. While most patients respond to initial chemotherapy, relapsed disease is often resistant to the drugs commonly used in CLL and patients are left with limited therapeutic options. In this study, we used a luminescent cell viability assay based on ATP levels to find compounds that were potent and efficacious in killing CLL cells. We employed an in-house process of quantitative high throughput screening (qHTS) to assess 8 concentrations of each member of a 2,816 compound library (including FDA-approved drugs and those known to be bio-active from commercial suppliers). Using qHTS we generated potency values on each compound in lymphocytes donated from each of six individuals with CLL and five unaffected individuals. We found 102 compounds efficacious against cells from all six individuals with CLL ("consensus" drugs) with five of these showing low or no activity on lymphocytes from a majority of normal donors, suggesting some degree of specificity for the leukemic cells. To our knowledge, this is the first study to screen a drug library against primary CLL cells to identify candidate agents for anti-cancer therapy. The results presented here offer possibilities for the development of novel drug candidates for therapeutic uses to treat CLL and other diseases.
|