27 | ||
11 | ||
6 | ||
3 | ||
2 |
2 | ||
2 | ||
3 | ||
2 | ||
5 | ||
4 | ||
6 | ||
2 | ||
3 | ||
2 | ||
2 |
16 | ||
10 | ||
9 | ||
9 | ||
1 | ||
1 | ||
1 | ||
1 |
17 | ||
9 | ||
6 | ||
5 | ||
5 | ||
5 | ||
5 | ||
5 | ||
5 | ||
5 | ||
5 | ||
5 | ||
4 | ||
3 | ||
3 | ||
3 | ||
3 | ||
3 | ||
3 | ||
3 |
6 | ||
3 | ||
2 | ||
2 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
Identification of N-(quinolin-8-yl)benzenesulfonamides as agents capable of down-regulating NFkappaB activity within two separate high-throughput screens of NFkappaB activation.Xie Y, Deng S, Thomas C, Liu Y, Zhang Y, Rinderspacher A, Huang W, Gong G, Wyler M, Cayanis E, Aulner N, Többen U, Chung C, Pampou S, Southall N, Vidović D, Schürer S, Branden L, Davis RE, Staudt LM, Inglese J, Austin C, Landry DW, Smith DH, Auld DSBioorg. Med. Chem. Lett. , (18), 329-35, 2008. Article Pubmed We describe here a series of N-(quinolin-8-yl)benzenesulfonamides capable of suppressing the NFkappaB pathway identified from two high-throughput screens run at two centers of the NIH Molecular Libraries Initiative. These small molecules were confirmed in both primary and secondary assays of NFkappaB activation and expanded upon through analogue synthesis. The series exhibited potencies in the cell-based assays at as low as 0.6 microM, and several indications suggest that the targeted activity lies within a common region of the NFkappaB pathway.
|
N4-phenyl modifications of N2-(2-hydroxyl)ethyl-6-(pyrrolidin-1-yl)-1,3,5-triazine-2,4-diamines enhance glucocerebrosidase inhibition by small molecules with potential as chemical chaperones for Gaucher disease.Huang W, Zheng W, Urban DJ, Inglese J, Sidransky E, Austin C, Thomas CBioorg. Med. Chem. Lett. , (17), 5783-9, 2007. Article Pubmed A series of 1,3,5-triazine-2,4,6-triamines were prepared and analyzed as inhibitors of glucocerebrosidase. Synthesis, structure activity relationships and the selectivity of chosen analogues against related sugar hydrolases enzymes are described.
|
Alzheimer disease is diagnosed postmortem by the density and spatial distribution of beta-amyloid plaques and tau-bearing neurofibrillary tangles. The major protein component of each lesion adopts cross-beta-sheet conformation capable of binding small molecules with submicromolar affinity. In many cases, however, Alzheimer pathology overlaps with Lewy body disease, characterized by the accumulation of a third cross-beta-sheet forming protein, alpha-synuclein. To determine the feasibility of distinguishing tau aggregates from beta-amyloid and alpha-synuclein aggregates with small molecule probes, a library containing 72,455 small molecules was screened for antagonists of tau-aggregate-mediated changes in Thioflavin S fluorescence, followed by secondary screens to distinguish the relative affinity for each substrate protein. Results showed that >10-fold binding selectivity among substrates could be achieved, with molecules selective for tau aggregates containing at least three aromatic or rigid moieties connected by two rotatable bonds.
|