51 | ||
3 | ||
3 | ||
2 | ||
1 |
15 | ||
6 | ||
10 | ||
7 | ||
9 | ||
5 | ||
7 | ||
8 | ||
1 | ||
2 |
35 | ||
14 | ||
10 | ||
8 | ||
5 | ||
1 |
23 | ||
11 | ||
11 | ||
11 | ||
9 | ||
7 | ||
7 | ||
6 | ||
5 | ||
5 | ||
5 | ||
5 | ||
5 | ||
4 | ||
4 | ||
4 | ||
4 | ||
4 | ||
3 | ||
3 |
11 | ||
6 | ||
4 | ||
3 | ||
3 | ||
3 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
A large scale high throughput screen identifies chemical inhibitors of phosphatidylinositol 4-kinase type II alpha.Sengupta N, Jović M, Barnaeva E, Kim D, Hu X, Southall N, Dejmek M, Mejdrova I, Nencka R, Baumlova A, Chalupska D, Boura E, Ferrer-Alegre M, Marugan J, Balla TJ. Lipid Res. , 2019. Article Pubmed The minor phospholipid, phosphatidylinositol 4-phosphate (PI4P) is emerging as a key regulator of lipid transfer in ER-membrane contact sites. Four different phosphatidylinositol 4-kinase (PI4K) enzymes generate PI4P in different membrane compartments supporting distinct cellular processes, many of which are crucial for the maintenance of cellular integrity but also hijacked by intracellular pathogens. While type III PI4Ks have been targeted by small molecular inhibitors, thus helping decipher their importance in cellular physiology, no inhibitors are available for the type II PI4Ks, which hinders investigations into their cellular functions. Here we describe the identification of small molecular inhibitors of PI4K2A by implementing a large scale small molecule high throughput screening. A novel assay was developed that allows testing of selected inhibitors against PI4K2A in intact cells using a BRET approach adapted to plate readers. The compounds disclosed here will pave the way to the optimization of PI4K2A inhibitors that can be used in cellular and animal studies to better understand the role of this enzyme in both normal and pathological states.
|
Identification of Chemotype Agonists for Human Resolvin D1 Receptor DRV1 with Pro-Resolving Functions.Chiang N, Barnaeva E, Hu X, Marugan J, Southall N, Ferrer-Alegre M, Serhan CNCell Chem Biol , 2018. Article Pubmed Resolution of acute inflammation is governed, in part, by specialized pro-resolving mediators, including lipoxins, resolvins, protectins, and maresins. Among them, resolvin D1 (RvD1) exhibits potent pro-resolving functions via activating human resolvin D1 receptor (DRV1/GPR32). RvD1 is a complex molecule that requires challenging organic synthesis, diminishing its potential as a therapeutic. Therefore, we implemented a high-throughput screening of small-molecule libraries and identified several chemotypes that activated recombinant DRV1, represented by NCGC00120943 (C1A), NCGC00135472 (C2A), pMPPF, and pMPPI. These chemotypes also elicited rapid impedance changes in cells overexpressing recombinant DRV1. With human macrophages, they each stimulated phagocytosis of serum-treated zymosan at concentrations comparable with that of RvD1, the endogenous DRV1 ligand. In addition, macrophage phagocytosis of live E. coli was significantly increased by these chemotypes in DRV1-transfected macrophages, compared with mock-transfected cells. Taken together, these chemotypes identified by unbiased screens act as RvD1 mimetics, exhibiting pro-resolving functions via interacting with human DRV1.
|
DPTIP, a newly identified potent brain penetrant neutral sphingomyelinase 2 inhibitor, regulates astrocyte-peripheral immune communication following brain inflammation.Rojas C, Barnaeva E, Thomas AG, Hu X, Southall N, Marugan J, Chaudhuri AD, Yoo SW, Hin N, Stepanek O, Wu Y, Zimmermann SC, Gadiano AG, Tsukamoto T, Rais R, Haughey N, Ferrer-Alegre M, Slusher BSSci Rep , (8), 17715, 2018. Article Pubmed Brain injury and inflammation induces a local release of extracellular vesicles (EVs) from astrocytes carrying proteins, RNAs, and microRNAs into the circulation. When these vesicles reach the liver, they stimulate the secretion of cytokines that mobilize peripheral immune cell infiltration into the brain, which can cause secondary tissue damage and impair recovery. Recent studies suggest that suppression of EV biosynthesis through neutral sphingomyelinase 2 (nSMase2) inhibition may represent a new therapeutic strategy. Unfortunately, currently available nSMase2 inhibitors exhibit low potency (IC50 ≥ 1 μM), poor solubility and/or limited brain penetration. Through a high throughput screening campaign of >365,000 compounds against human nSMase2 we identified 2,6-Dimethoxy-4-(5-Phenyl-4-Thiophen-2-yl-1H-Imidazol-2-yl)-Phenol (DPTIP), a potent (IC50 30 nM), selective, metabolically stable, and brain penetrable (AUCbrain/AUCplasma = 0.26) nSMase2 inhibitor. DPTIP dose-dependently inhibited EV release in primary astrocyte cultures. In a mouse model of brain injury conducted in GFAP-GFP mice, DPTIP potently (10 mg/kg IP) inhibited IL-1β-induced astrocyte-derived EV release (51 ± 13%; p < 0.001). This inhibition led to a reduction of cytokine upregulation in liver and attenuation of the infiltration of immune cells into the brain (80 ± 23%; p < 0.01). A structurally similar but inactive analog had no effect in vitro or in vivo.
|
Structure-Based Engineering of Irreversible Inhibitors against Histone Lysine Demethylase KDM5A.Horton JR, Woodcock CB, Chen Q, Liu X, Zhang X, Shanks J, Rai Bantukallu G, Mott BT, Jansen DJ, Kales S, Henderson M, Cyr M, Pohida K, Hu X, Shah P, Xu X, Jadhav A, Maloney DJ, Hall M, Simeonov A, Fu H, Vertino PM, Cheng XJ. Med. Chem. , 2018. Article Pubmed The active sites of hundreds of human α-ketoglutarate (αKG) and Fe(II)-dependent dioxygenases are exceedingly well preserved, which challenges the design of selective inhibitors. We identified a noncatalytic cysteine (Cys481 in KDM5A) near the active sites of KDM5 histone H3 lysine 4 demethylases, which is absent in other histone demethylase families, that could be explored for interaction with the cysteine-reactive electrophile acrylamide. We synthesized analogs of a thienopyridine-based inhibitor chemotype, namely, 2-((3-aminophenyl)(2-(piperidin-1-yl)ethoxy)methyl)thieno[3,2- b]pyridine-7-carboxylic acid (N70) and a derivative containing a (dimethylamino)but-2-enamido)phenyl moiety (N71) designed to form a covalent interaction with Cys481. We characterized the inhibitory and binding activities against KDM5A and determined the cocrystal structures of the catalytic domain of KDM5A in complex with N70 and N71. Whereas the noncovalent inhibitor N70 displayed αKG-competitive inhibition that could be reversed after dialysis, inhibition by N71 was dependent on enzyme concentration and persisted even after dialysis, consistent with covalent modification.
|
A new series of quinazoline-based analogs as potent bromodomain-containing protein 4 (BRD4) inhibitors is described. The structure-activity relationships on 2- and 4-position of quinazoline ring, and the substitution at 6-position that mimic the acetylated lysine are discussed. A co-crystallized structure of 48 (CN750) with BRD4 (BD1) including key inhibitor-protein interactions is also highlighted. Together with preliminary rodent pharmacokinetic results, a new lead (65, CN427) is identified which is suitable for further lead optimization.
|
KDM5 histone demethylases repress immune response via suppression of STING.Wu L, Cao J, Cai WL, Lang SM, Horton JR, Jansen DJ, Liu ZZ, Chen JF, Zhang M, Mott BT, Pohida K, Rai Bantukallu G, Kales S, Henderson M, Hu X, Jadhav A, Maloney DJ, Simeonov A, Zhu S, Iwasaki A, Hall M, Cheng X, Shadel GS, Yan QPLoS Biol. , (16), e2006134, 2018. Article Pubmed Cyclic GMP-AMP (cGAMP) synthase (cGAS) stimulator of interferon genes (STING) senses pathogen-derived or abnormal self-DNA in the cytosol and triggers an innate immune defense against microbial infection and cancer. STING agonists induce both innate and adaptive immune responses and are a new class of cancer immunotherapy agents tested in multiple clinical trials. However, STING is commonly silenced in cancer cells via unclear mechanisms, limiting the application of these agonists. Here, we report that the expression of STING is epigenetically suppressed by the histone H3K4 lysine demethylases KDM5B and KDM5C and is activated by the opposing H3K4 methyltransferases. The induction of STING expression by KDM5 blockade triggered a robust interferon response in a cytosolic DNA-dependent manner in breast cancer cells. This response resulted in resistance to infection by DNA and RNA viruses. In human tumors, KDM5B expression is inversely associated with STING expression in multiple cancer types, with the level of intratumoral CD8+ T cells, and with patient survival in cancers with a high level of cytosolic DNA, such as human papilloma virus (HPV)-positive head and neck cancer. These results demonstrate a novel epigenetic regulatory pathway of immune response and suggest that KDM5 demethylases are potential targets for antipathogen treatment and anticancer immunotherapy.
|
Optimization of the first small-molecule relaxin/insulin-like family peptide receptor (RXFP1) agonists: Activation results in an antifibrotic gene expression profile.Wilson KJ, Xiao J, Chen C, Huang Z, Agoulnik IU, Ferrer-Alegre M, Southall N, Hu X, Zheng W, Xu X, Wang A, Myhr C, Barnaeva E, George ER, Agoulnik AI, Marugan JEur J Med Chem , (156), 79-92, 2018. Article Pubmed A dose responsive quantitative high throughput screen (qHTS) of >350,000 compounds against a human relaxin/insulin-like family peptide receptor (RXFP1) transfected HEK293 cell line identified 2-acetamido-N-phenylbenzamides 1 and 3 with modest agonist activity. An extensive structure-activity study has been undertaken to optimize the potency, efficacy, and physical properties of the series, resulting in the identification of compound 65 (ML-290), which has excellent in vivo PK properties with high levels of systemic exposure. This series, exemplified by 65, has produced first-in-class small-molecule agonists of RXFP1 and is a potent activator of anti-fibrotic genes.
|
Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry.Yang S, et al.Cell Discov , (4), 31, 2018. Article Pubmed The re-emergence of Zika virus (ZIKV) and Ebola virus (EBOV) poses serious and continued threats to the global public health. Effective therapeutics for these maladies is an unmet need. Here, we show that emetine, an anti-protozoal agent, potently inhibits ZIKV and EBOV infection with a low nanomolar half maximal inhibitory concentration (IC50) in vitro and potent activity in vivo. Two mechanisms of action for emetine are identified: the inhibition of ZIKV NS5 polymerase activity and disruption of lysosomal function. Emetine also inhibits EBOV entry. Cephaeline, a desmethyl analog of emetine, which may be better tolerated in patients than emetine, exhibits a similar efficacy against both ZIKV and EBOV infections. Hence, emetine and cephaeline offer pharmaceutical therapies against both ZIKV and EBOV infection.
|
High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: A drug repurposing strategy for advanced cancer.Datta A, Kim H, McGee L, Johnson AE, Talwar S, Marugan J, Southall N, Hu X, Lal M, Mondal D, Ferrer-Alegre M, Abdel-Mageed ABSci Rep , (8), 8161, 2018. Article Pubmed Targeting exosome biogenesis and release may have potential clinical implications for cancer therapy. Herein, we have optimized a quantitative high throughput screen (qHTS) assay to identify compounds that modulate exosome biogenesis and/or release by aggressive prostate cancer (PCa) CD63-GFP-expressing C4-2B cells. A total of 4,580 compounds were screened from the LOPAC library (a collection of 1,280 pharmacologically active compounds) and the NPC library (NCGC collection of 3,300 compounds approved for clinical use). Twenty-two compounds were found to be either potent activators or inhibitors of intracellular GFP signal in the CD63-GFP-expressing C4-2B cells. The activity of lead compounds in modulating the secretion of exosomes was validated by a tunable resistive pulse sensing (TRPS) system (qNano-IZON) and flow cytometry. The mechanism of action of the lead compounds in modulating exosome biogenesis and/or secretion were delineated by immunoblot analysis of protein markers of the endosomal sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways. The lead compounds tipifarnib, neticonazole, climbazole, ketoconazole, and triademenol were validated as potent inhibitors and sitafloxacin, forskolin, SB218795, fenoterol, nitrefazole and pentetrazol as activators of exosome biogenesis and/or secretion in PC cells. Our findings implicate the potential utility of drug-repurposing as novel adjunct therapeutic strategies in advanced cancer.
|
Insights into the Action of Inhibitor Enantiomers against Histone Lysine Demethylase 5A.Horton JR, Liu X, Wu L, Zhang K, Shanks J, Zhang X, Rai Bantukallu G, Mott BT, Jansen DJ, Kales S, Henderson M, Pohida K, Fang Y, Hu X, Jadhav A, Maloney DJ, Hall M, Simeonov A, Fu H, Vertino PM, Yan Q, Cheng XJ. Med. Chem. , 2018. Article Pubmed Isomers of chiral drugs can exhibit marked differences in biological activities. We studied the binding and inhibitory activities of 12 compounds against KDM5A. Among them are two pairs of enantiomers representing two distinct inhibitor chemotypes, namely, ( R)- and ( S)-2-((2-chlorophenyl)(2-(piperidin-1-yl)ethoxy)methyl)-1 H-pyrrolo[3,2- b]pyridine-7-carboxylic acid (compounds N51 and N52) and ( R) - and ( S) -N-(1-(3-isopropyl-1 H-pyrazole-5-carbonyl)pyrrolidin-3-yl)cyclopropanecarboxamide (compounds N54 and N55). In vitro, the S enantiomer of the N51/N52 pair (N52) and the R enantiomer of the N54/N55 pair (N54) exhibited about 4- to 5-fold greater binding affinity. The more potent enzyme inhibition of KDM5A by the R-isoform for the cell-permeable N54/N55 pair translated to differences in growth inhibitory activity. We determined structures of the KDM5A catalytic domain in complex with all 12 inhibitors, which revealed the interactions (or lack thereof) responsible for the differences in binding affinity. These results provide insights to guide improvements in binding potency and avenues for development of cell permeable inhibitors of the KDM5 family.
|