17 | ||
5 | ||
3 | ||
3 | ||
1 | ||
1 |
7 | ||
3 | ||
5 | ||
1 | ||
5 | ||
2 | ||
2 | ||
2 | ||
1 | ||
4 |
15 | ||
12 | ||
8 | ||
3 | ||
3 | ||
1 |
6 | ||
5 | ||
4 | ||
3 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
3 | ||
2 | ||
2 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
The SARS-CoV-2 Cytopathic Effect Is Blocked by Lysosome Alkalizing Small Molecules.Gorshkov K, Chen C, Bostwick R, Rasmussen L, Tran BN, Cheng Y, Xu M, Pradhan M, Henderson M, Zhu W, Oh E, Susumu K, Wolak M, Shamim K, Huang W, Hu X, Shen M, Klumpp-Thomas C, Itkin Z, Shinn P, Carlos de la Torre J, Simeonov A, Michael S, Hall M, Lo D, Zheng WACS Infect Dis , 2020. Article Pubmed Understanding the SARS-CoV-2 virus' pathways of infection, virus-host-protein interactions, and mechanisms of virus-induced cytopathic effects will greatly aid in the discovery and design of new therapeutics to treat COVID-19. Chloroquine and hydroxychloroquine, extensively explored as clinical agents for COVID-19, have multiple cellular effects including alkalizing lysosomes and blocking autophagy as well as exhibiting dose-limiting toxicities in patients. Therefore, we evaluated additional lysosomotropic compounds to identify an alternative lysosome-based drug repurposing opportunity. We found that six of these compounds blocked the cytopathic effect of SARS-CoV-2 in Vero E6 cells with half-maximal effective concentration (EC50) values ranging from 2.0 to 13 μM and selectivity indices (SIs; SI = CC50/EC50) ranging from 1.5- to >10-fold. The compounds (1) blocked lysosome functioning and autophagy, (2) prevented pseudotyped particle entry, (3) increased lysosomal pH, and (4) reduced (ROC-325) viral titers in the EpiAirway 3D tissue model. Consistent with these findings, the siRNA knockdown of ATP6V0D1 blocked the HCoV-NL63 cytopathic effect in LLC-MK2 cells. Moreover, an analysis of SARS-CoV-2 infected Vero E6 cell lysate revealed significant dysregulation of autophagy and lysosomal function, suggesting a contribution of the lysosome to the life cycle of SARS-CoV-2. Our findings suggest the lysosome as a potential host cell target to combat SARS-CoV-2 infections and inhibitors of lysosomal function could become an important component of drug combination therapies aimed at improving treatment and outcomes for COVID-19.
|
Synergistic and Antagonistic Drug Combinations against SARS-CoV-2.Bobrowski T, Chen L, Eastman R, Itkin Z, Shinn P, Chen C, Guo H, Zheng W, Michael S, Simeonov A, Hall M, Zakharov A, Muratov ENMol Ther , 2020. Article Pubmed Antiviral drug development for COVID-19 is occurring at an unprecedented pace, yet there are still limited therapeutic options for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2, thus generating better antiviral efficacy. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro. Sixteen synergistic and eight antagonistic combinations were identified; among 16 synergistic cases, combinations of the FDA-approved drug nitazoxanide with remdesivir, amodiaquine, or umifenovir were most notable, all exhibiting significant synergy against SARS-CoV-2 in a cell model. However, the combination of remdesivir and lysosomotropic drugs, such as hydroxychloroquine, demonstrated strong antagonism. Overall, these results highlight the utility of drug repurposing and preclinical testing of drug combinations for discovering potential therapies to treat COVID-19.
|
Identifying SARS-CoV-2 Entry Inhibitors through Drug Repurposing Screens of SARS-S and MERS-S Pseudotyped Particles.Chen C, Xu M, Pradhan M, Gorshkov K, Petersen JD, Straus MR, Zhu W, Shinn P, Guo H, Shen M, Klumpp-Thomas C, Michael S, Zimmerberg J, Zheng W, Whittaker GRACS Pharmacol Transl Sci , (3), 1165-1175, 2020. Article Pubmed While vaccine development will hopefully quell the global pandemic of COVID-19 caused by SARS-CoV-2, small molecule drugs that can effectively control SARS-CoV-2 infection are urgently needed. Here, inhibitors of spike (S) mediated cell entry were identified in a high throughput screen of an approved drugs library with SARS-S and MERS-S pseudotyped particle entry assays. We discovered six compounds (cepharanthine, abemaciclib, osimertinib, trimipramine, colforsin, and ingenol) to be broad spectrum inhibitors for spike-mediated entry. This work could contribute to the development of effective treatments against the initial stage of viral infection and provide mechanistic information that might aid the design of new drug combinations for clinical trials for COVID-19 patients.
|
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emphasized the urgency to develop effective therapeutics. Drug repurposing screening is regarded as one of the most practical and rapid approaches for the discovery of such therapeutics. The 3C-like protease (3CLpro), or main protease (Mpro) of SARS-CoV-2 is a valid drug target as it is a specific viral enzyme and plays an essential role in viral replication. We performed a quantitative high-throughput screening (qHTS) of 10 755 compounds consisting of approved and investigational drugs, and bioactive compounds using a SARS-CoV-2 3CLpro assay. Twenty-three small molecule inhibitors of SARS-CoV-2 3CLpro have been identified with IC50s ranging from 0.26 to 28.85 μM. Walrycin B (IC50 = 0.26 μM), hydroxocobalamin (IC50 = 3.29 μM), suramin sodium (IC50 = 6.5 μM), Z-DEVD-FMK (IC50 = 6.81 μM), LLL-12 (IC50 = 9.84 μM), and Z-FA-FMK (IC50 = 11.39 μM) are the most potent 3CLpro inhibitors. The activity of the anti-SARS-CoV-2 viral infection was confirmed in 7 of 23 compounds using a SARS-CoV-2 cytopathic effect assay. The results demonstrated a set of SARS-CoV-2 3CLpro inhibitors that may have potential for further clinical evaluation as part of drug combination therapies to treating COVID-19 patients and as starting points for chemistry optimization for new drug development.
|
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emphasized the urgency to develop effective therapeutics. Drug repurposing screening is regarded as one of the most practical and rapid approaches for the discovery of such therapeutics. The 3C like protease (3CL pro ), or main protease (M pro ) of SARS-CoV-2 is a valid drug target as it is a specific viral enzyme and plays an essential role in viral replication. We performed a quantitative high throughput screening (qHTS) of 10,755 compounds consisting of approved and investigational drugs, and bioactive compounds using a SARS-CoV-2 3CL pro assay. Twenty-three small molecule inhibitors of SARS-CoV-2 3CL pro have been identified with IC50s ranging from 0.26 to 28.85 μM. Walrycin B (IC 50 = 0.26 µM), Hydroxocobalamin (IC 50 = 3.29 µM), Suramin sodium (IC 50 = 6.5 µM), Z-DEVD-FMK (IC 50 = 6.81 µM), LLL-12 (IC 50 = 9.84 µM), and Z-FA-FMK (IC 50 = 11.39 µM) are the most potent 3CL pro inhibitors. The activities of anti-SARS-CoV-2 viral infection was confirmed in 7 of 23 compounds using a SARS-CoV-2 cytopathic effect assay. The results demonstrated a set of SARS-CoV-2 3CL pro inhibitors that may have potential for further clinical evaluation as part of drug combination therapies to treating COVID-19 patients, and as starting points for chemistry optimization for new drug development.
|
Keeping It Clean: The Cell Culture Quality Control Experience at the National Center for Advancing Translational Sciences.Roth J, Lee TD, Cheff D, Gosztyla ML, Asawa RR, Danchik C, Michael S, Simeonov A, Klumpp-Thomas C, Wilson K, Hall MSLAS Discov , 2472555220911451, 2020. Article Pubmed Quality control monitoring of cell lines utilized in biomedical research is of utmost importance and is critical for the reproducibility of data. Two key pitfalls in tissue culture are 1) cell line authenticity and 2) Mycoplasma contamination. As a collaborative research institute, the National Center for Advancing Translational Sciences (NCATS) receives cell lines from a range of commercial and academic sources, which are adapted for high-throughput screening. Here, we describe the implementation of routine NCATS-wide Mycoplasma testing and short tandem repeat (STR) testing for cell lines. Initial testing identified a >10% Mycoplasma contamination rate. While the implementation of systematic testing has not fully suppressed Mycoplasma contamination rates, clearly defined protocols that include the immediate destruction of contaminated cell lines wherever possible has enabled rapid intervention and removal of compromised cell lines. Data for >2000 cell line samples tested over 3 years, and case studies are provided. STR testing of 186 cell lines with established STR profiles revealed only five misidentified cell lines, all of which were received from external labs. The data collected over the 3 years since implementation of this systematic testing demonstrate the importance of continual vigilance for rapid identification of "problem" cell lines, for ensuring reproducible data in translational science research.
|
A biofabricated vascularized skin model of atopic dermatitis for preclinical studies.Liu X, Michael S, Bharti K, Ferrer-Alegre M, Song MJBiofabrication , (12), 035002, 2020. Article Pubmed Three-dimensional (3D) biofabrication techniques enable the production of multicellular tissue models as assay platforms for drug screening. The increased cellular and physiological complexity in these 3D tissue models should recapitulate the relevant biological environment found in the body. Here we describe the use of 3D bioprinting techniques to fabricate skin equivalent tissues of varying physiological complexity, including human epidermis, non-vascularized and vascularized full-thickness skin tissue equivalents, in a multi-well platform to enable drug screening. Human keratinocytes, fibroblasts, and pericytes, and induced pluripotent stem cell-derived endothelial cells were used in the biofabrication process to produce the varying complexity. The skin equivalents exhibit the correct structural markers of dermis and epidermis stratification, with physiological functions of the skin barrier. The robustness, versatility and reproducibility of the biofabrication techniques are further highlighted by the generation of atopic dermatitis (AD)-disease like tissues. These AD models demonstrate several clinical hallmarks of the disease, including: (i) spongiosis and hyperplasia; (ii) early and terminal expression of differentiation proteins; and (iii) increases in levels of pro-inflammatory cytokines. We show the pre-clinical relevance of the biofabricated AD tissue models to correct disease phenotype by testing the effects of dexamethasone, an anti-inflammatory corticosteroid, and three Janus Kinase inhibitors from clinical trials for AD. This study demonstrates the development of a versatile and reproducible bioprinting approach to create human skin equivalents with a range of cellular complexity for disease modeling. In addition, we establish several assay readouts that are quantifiable, robust, AD relevant, and can be scaled up for compound screening. The results show that the cellular complexity of the tissues develops a more physiologically relevant AD disease model. Thus, the skin models in this study offer an in vitro approach for the rapid understanding of pathological mechanisms, and testing for efficacy of action and toxic effects of drugs.
|
Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening.Lin GL, et al.Sci Transl Med , (11), 2019. Article Pubmed Diffuse midline gliomas (DMGs) are universally lethal malignancies occurring chiefly during childhood and involving midline structures of the central nervous system, including thalamus, pons, and spinal cord. These molecularly related cancers are characterized by high prevalence of the histone H3K27M mutation. In search of effective therapeutic options, we examined multiple DMG cultures in sequential quantitative high-throughput screens (HTS) of 2706 approved and investigational drugs. This effort generated 19,936 single-agent dose responses that inspired a series of HTS-enabled drug combination assessments encompassing 9195 drug-drug examinations. Top combinations were validated across patient-derived cell cultures representing the major DMG genotypes. In vivo testing in patient-derived xenograft models validated the combination of the multi-histone deacetylase (HDAC) inhibitor panobinostat and the proteasome inhibitor marizomib as a promising therapeutic approach. Transcriptional and metabolomic surveys revealed substantial alterations to key metabolic processes and the cellular unfolded protein response after treatment with panobinostat and marizomib. Mitigation of drug-induced cytotoxicity and basal mitochondrial respiration with exogenous application of nicotinamide mononucleotide (NMN) or exacerbation of these phenotypes when blocking nicotinamide adenine dinucleotide (NAD+) production via nicotinamide phosphoribosyltransferase (NAMPT) inhibition demonstrated that metabolic catastrophe drives the combination-induced cytotoxicity. This study provides a comprehensive single-agent and combinatorial drug screen for DMG and identifies concomitant HDAC and proteasome inhibition as a promising therapeutic strategy that underscores underrecognized metabolic vulnerabilities in DMG.
|
Fully Three-Dimensional Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function.Derr K, Zou J, Luo K, Song MJ, Sittampalam S, Zhou C, Michael S, Ferrer-Alegre M, Derr PTissue Eng Part C Methods , (25), 334-343, 2019. Article Pubmed IMPACT STATEMENT: This article describes a method for the biofabrication of skin tissue equivalents in a multiwell plate format. The technique and results overcome shortcomings of previously published engineering methods, and show good architecture and barrier function from well to well; thus it may be used for compound functional testing and for the development of disease tissue models for screening.
|
Detecting Secretory Proteins by Acoustic Droplet Ejection in Multiplexed High-Throughput Applications.Iannotti M, MacArthur R, Jones R, Tao D, Singec I, Michael S, Inglese JACS Chem. Biol. , 2019. Article Pubmed Nearly one-third of the encoded proteome is comprised of secretory proteins that enable communication between cells and organ systems, playing a ubiquitous role in human health and disease. High-throughput detection of secreted proteins would enhance efforts to identify therapies for secretion-related diseases. Using the Z mutant of alpha-1 antitrypsin as a human secretory model, we have developed 1536-well high-throughput screening assays that utilize acoustic droplet ejection to transfer nanoliter volumes of sample for protein quantification. Among them, the acoustic reverse phase protein array (acoustic RPPA) is a multiplexable, low-cost immunodetection technology for native, endogenously secreted proteins from physiologically relevant model systems like stem cells that is compatible with plate-based instrumentation. Parallel assay profiling with the LOPAC1280 chemical library validated performance and orthogonality between a secreted bioluminescent reporter and acoustic RPPA method by consistently identifying secretory modulators with comparable concentration response relationships. Here, we introduce a robust, multiplexed drug discovery platform coupling extracellular protein quantification by acoustic RPPA with intracellular and cytotoxicity analyses from single wells, demonstrating proof-of-principle applications for human induced pluripotent stem cell-derived hepatocytes.
|