97 | ||
61 | ||
10 | ||
2 | ||
2 |
12 | ||
5 | ||
18 | ||
12 | ||
19 | ||
9 | ||
15 | ||
13 | ||
13 | ||
7 | ||
3 | ||
10 | ||
7 | ||
4 | ||
2 |
73 | ||
51 | ||
39 | ||
16 | ||
7 | ||
5 | ||
4 | ||
3 | ||
1 | ||
1 |
59 | ||
33 | ||
24 | ||
22 | ||
19 | ||
16 | ||
15 | ||
14 | ||
12 | ||
12 | ||
11 | ||
11 | ||
10 | ||
9 | ||
9 | ||
9 | ||
9 | ||
8 | ||
8 | ||
8 |
13 | ||
9 | ||
5 | ||
5 | ||
5 | ||
4 | ||
4 | ||
4 | ||
4 | ||
4 | ||
3 | ||
3 | ||
3 | ||
3 | ||
3 | ||
3 | ||
2 | ||
2 | ||
2 | ||
2 |
The SARS-CoV-2 Cytopathic Effect Is Blocked by Lysosome Alkalizing Small Molecules.Gorshkov K, Chen C, Bostwick R, Rasmussen L, Tran BN, Cheng Y, Xu M, Pradhan M, Henderson M, Zhu W, Oh E, Susumu K, Wolak M, Shamim K, Huang W, Hu X, Shen M, Klumpp-Thomas C, Itkin Z, Shinn P, Carlos de la Torre J, Simeonov A, Michael S, Hall M, Lo D, Zheng WACS Infect Dis , 2020. Article Pubmed Understanding the SARS-CoV-2 virus' pathways of infection, virus-host-protein interactions, and mechanisms of virus-induced cytopathic effects will greatly aid in the discovery and design of new therapeutics to treat COVID-19. Chloroquine and hydroxychloroquine, extensively explored as clinical agents for COVID-19, have multiple cellular effects including alkalizing lysosomes and blocking autophagy as well as exhibiting dose-limiting toxicities in patients. Therefore, we evaluated additional lysosomotropic compounds to identify an alternative lysosome-based drug repurposing opportunity. We found that six of these compounds blocked the cytopathic effect of SARS-CoV-2 in Vero E6 cells with half-maximal effective concentration (EC50) values ranging from 2.0 to 13 μM and selectivity indices (SIs; SI = CC50/EC50) ranging from 1.5- to >10-fold. The compounds (1) blocked lysosome functioning and autophagy, (2) prevented pseudotyped particle entry, (3) increased lysosomal pH, and (4) reduced (ROC-325) viral titers in the EpiAirway 3D tissue model. Consistent with these findings, the siRNA knockdown of ATP6V0D1 blocked the HCoV-NL63 cytopathic effect in LLC-MK2 cells. Moreover, an analysis of SARS-CoV-2 infected Vero E6 cell lysate revealed significant dysregulation of autophagy and lysosomal function, suggesting a contribution of the lysosome to the life cycle of SARS-CoV-2. Our findings suggest the lysosome as a potential host cell target to combat SARS-CoV-2 infections and inhibitors of lysosomal function could become an important component of drug combination therapies aimed at improving treatment and outcomes for COVID-19.
|
Synergistic and Antagonistic Drug Combinations against SARS-CoV-2.Bobrowski T, Chen L, Eastman R, Itkin Z, Shinn P, Chen C, Guo H, Zheng W, Michael S, Simeonov A, Hall M, Zakharov A, Muratov ENMol Ther , 2020. Article Pubmed Antiviral drug development for COVID-19 is occurring at an unprecedented pace, yet there are still limited therapeutic options for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2, thus generating better antiviral efficacy. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro. Sixteen synergistic and eight antagonistic combinations were identified; among 16 synergistic cases, combinations of the FDA-approved drug nitazoxanide with remdesivir, amodiaquine, or umifenovir were most notable, all exhibiting significant synergy against SARS-CoV-2 in a cell model. However, the combination of remdesivir and lysosomotropic drugs, such as hydroxychloroquine, demonstrated strong antagonism. Overall, these results highlight the utility of drug repurposing and preclinical testing of drug combinations for discovering potential therapies to treat COVID-19.
|
Development of a High-Throughput Homogeneous AlphaLISA Drug Screening Assay for the Detection of SARS-CoV-2 Nucleocapsid.Gorshkov K, Chen C, Xu M, Carlos de la Torre J, Martinez-Sobrido L, Moran T, Zheng WACS Pharmacol Transl Sci , (3), 1233-1241, 2020. Article Pubmed The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in urgent need of therapeutic options. High-throughput screening (HTS) offers an opportunity to rapidly identify such compounds. In this work, we have developed a homogeneous cell-based HTS system using AlphaLISA detection technology for the SARS-CoV-2 nucleocapsid protein (NP). Our assay measures both recombinant and endogenous NP from viral lysates and tissue culture supernatants (TCS) in a sandwich-based format using two monoclonal antibodies against the NP analyte. Viral NP was detected and quantified in both tissue culture supernatants and cell lysates, with large differences observed between 24 and 48 h of infection. We simulated viral infection by spiking recombinant NP into 384-well plates with live Vero-E6 cells and were able to detect the NP with high sensitivity and a large dynamic range. Antiviral agents that inhibit either viral cell entry or replication decrease the AlphaLISA NP signal. Thus, this assay can be used for high-throughput screening of small molecules and biologics in the fight against the COVID-19 pandemic.
|
Identifying SARS-CoV-2 Entry Inhibitors through Drug Repurposing Screens of SARS-S and MERS-S Pseudotyped Particles.Chen C, Xu M, Pradhan M, Gorshkov K, Petersen JD, Straus MR, Zhu W, Shinn P, Guo H, Shen M, Klumpp-Thomas C, Michael S, Zimmerberg J, Zheng W, Whittaker GRACS Pharmacol Transl Sci , (3), 1165-1175, 2020. Article Pubmed While vaccine development will hopefully quell the global pandemic of COVID-19 caused by SARS-CoV-2, small molecule drugs that can effectively control SARS-CoV-2 infection are urgently needed. Here, inhibitors of spike (S) mediated cell entry were identified in a high throughput screen of an approved drugs library with SARS-S and MERS-S pseudotyped particle entry assays. We discovered six compounds (cepharanthine, abemaciclib, osimertinib, trimipramine, colforsin, and ingenol) to be broad spectrum inhibitors for spike-mediated entry. This work could contribute to the development of effective treatments against the initial stage of viral infection and provide mechanistic information that might aid the design of new drug combinations for clinical trials for COVID-19 patients.
|
Human recombinant lysosomal β-Hexosaminidases produced in Pichia pastoris efficiently reduced lipid accumulation in Tay-Sachs fibroblasts.Espejo-Mojica AJ, Rodríguez-López A, Li R, Zheng W, Alméciga-Díaz CJ, Dulcey-Sepúlveda C, Combariza G, Barrera LAAm J Med Genet C Semin Med Genet , 2020. Article Pubmed GM2 gangliosidosis, Tay-Sachs and Sandhoff diseases, are lysosomal storage disorders characterized by the lysosomal accumulation of GM2 gangliosides. This accumulation is due to deficiency in the activity of the β-hexosaminidases Hex-A or Hex-B, which are dimeric hydrolases formed by αβ or ββ subunits, respectively. These disorders show similar clinical manifestations that range from mild systemic symptoms to neurological damage and premature death. There is still no effective therapy for GM2 gangliosidoses, but some therapeutic alternatives, as enzyme replacement therapy, have being evaluated. Previously, we reported the production of active human recombinant β-hexosaminidases (rhHex-A and rhHex-B) in the methylotrophic yeast Pichia pastoris. In this study, we evaluated in vitro the cellular uptake, intracellular delivery to lysosome, and reduction of stored substrates. Both enzymes were taken-up via endocytic pathway mediated by mannose and mannose-6-phosphate receptors and delivered to lysosomes. Noteworthy, rhHex-A diminished the levels of stored lipids and lysosome mass in fibroblasts from Tay-Sachs patients. Overall, these results confirm the potential of P. pastoris as host to produce recombinant β-hexosaminidases intended to be used in the treatment of GM2 gangliosidosis.
|
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emphasized the urgency to develop effective therapeutics. Drug repurposing screening is regarded as one of the most practical and rapid approaches for the discovery of such therapeutics. The 3C-like protease (3CLpro), or main protease (Mpro) of SARS-CoV-2 is a valid drug target as it is a specific viral enzyme and plays an essential role in viral replication. We performed a quantitative high-throughput screening (qHTS) of 10 755 compounds consisting of approved and investigational drugs, and bioactive compounds using a SARS-CoV-2 3CLpro assay. Twenty-three small molecule inhibitors of SARS-CoV-2 3CLpro have been identified with IC50s ranging from 0.26 to 28.85 μM. Walrycin B (IC50 = 0.26 μM), hydroxocobalamin (IC50 = 3.29 μM), suramin sodium (IC50 = 6.5 μM), Z-DEVD-FMK (IC50 = 6.81 μM), LLL-12 (IC50 = 9.84 μM), and Z-FA-FMK (IC50 = 11.39 μM) are the most potent 3CLpro inhibitors. The activity of the anti-SARS-CoV-2 viral infection was confirmed in 7 of 23 compounds using a SARS-CoV-2 cytopathic effect assay. The results demonstrated a set of SARS-CoV-2 3CLpro inhibitors that may have potential for further clinical evaluation as part of drug combination therapies to treating COVID-19 patients and as starting points for chemistry optimization for new drug development.
|
Expanded human skin fibroblast cells from four different aged healthy individuals, 11-year-old female, 1-year-old male, 2-month-old male, and 8-year-old male, were used to generate integration-free induced pluripotent stem cell (iPSC) lines TRNDi021-C, TRNDi023-D, TRNDi024-D, and TRNDi025-A, respectively, by exogenous expression of four reprogramming factors, human SXO2, OCT3/4, C-MYC, KLF4. The authenticity of established iPSC lines was confirmed by the expressions of stem cell markers, karyotype analysis, and teratoma formation. These iPSC lines could serve as young healthy controls for the studies involving patient-specific iPSCs.
|
Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium.Jacob F, Pather SR, Huang WK, Zhang F, Wong SZH, Zhou H, Cubitt B, Fan W, Chen C, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, Carlos de la Torre J, Ming GLCell Stem Cell , (27), 937-950.e9, 2020. Article Pubmed Neurological complications are common in patients with COVID-19. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function is not well understood. Here, we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found that neurons and astrocytes were sparsely infected, but choroid plexus epithelial cells underwent robust infection. We optimized a protocol to generate choroid plexus organoids from hiPSCs and showed that productive SARS-CoV-2 infection of these organoids is associated with increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our findings provide evidence for selective SARS-CoV-2 neurotropism and support the use of hiPSC-derived brain organoids as a platform to investigate SARS-CoV-2 infection susceptibility of brain cells, mechanisms of virus-induced brain dysfunction, and treatment strategies.
|
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emphasized the urgency to develop effective therapeutics. Drug repurposing screening is regarded as one of the most practical and rapid approaches for the discovery of such therapeutics. The 3C like protease (3CL pro ), or main protease (M pro ) of SARS-CoV-2 is a valid drug target as it is a specific viral enzyme and plays an essential role in viral replication. We performed a quantitative high throughput screening (qHTS) of 10,755 compounds consisting of approved and investigational drugs, and bioactive compounds using a SARS-CoV-2 3CL pro assay. Twenty-three small molecule inhibitors of SARS-CoV-2 3CL pro have been identified with IC50s ranging from 0.26 to 28.85 μM. Walrycin B (IC 50 = 0.26 µM), Hydroxocobalamin (IC 50 = 3.29 µM), Suramin sodium (IC 50 = 6.5 µM), Z-DEVD-FMK (IC 50 = 6.81 µM), LLL-12 (IC 50 = 9.84 µM), and Z-FA-FMK (IC 50 = 11.39 µM) are the most potent 3CL pro inhibitors. The activities of anti-SARS-CoV-2 viral infection was confirmed in 7 of 23 compounds using a SARS-CoV-2 cytopathic effect assay. The results demonstrated a set of SARS-CoV-2 3CL pro inhibitors that may have potential for further clinical evaluation as part of drug combination therapies to treating COVID-19 patients, and as starting points for chemistry optimization for new drug development.
|
PKM2 inhibition may reverse therapeutic resistance to transarterial chemoembolization in hepatocellular carcinoma.Martin SP, Fako V, Dang H, Dominguez DA, Khatib S, Ma L, Wang H, Zheng W, Wang XWJ. Exp. Clin. Cancer Res. , (39), 99, 2020. Article Pubmed BACKGROUND: Therapeutic options for patients with hepatocellular carcinoma (HCC) are limited. Transarterial chemoembolization (TACE) is an interventional procedure used to deliver chemotherapy and embolizing agents directly to the tumor and is the procedure of choice for patients with intermediate stage HCC. While effective, more than 40% of patients do not respond to therapy, highlighting the need to investigate possible mechanisms of resistance. We sought to evaluate mechanisms of TACE resistance and evaluate a potential therapeutic target to overcome this resistance.
METHODS: Using a prognostic gene signature which predicts TACE response (TACE Navigator) in a cohort of HCC patients who received TACE, patients were classified as responders and non-responders. Transcriptomic and gene pathway analysis were used to identify potential drivers of TACE resistance. Knockdown of the gene encoding rate limiting enzyme PKM2 using shRNA in HCC cell lines, as well as pharmacologic inhibition of PKM2 with shikonin using an in vitro TACE model measured response to chemotherapy under hypoxia. Finally, we replicated the TACE model with shikonin using patient derived cell line organoids (PDC). Functional studies were performed in vitro using immunoblotting, quantitative polymerase chain reaction, glycolysis and hypoxia assays.
RESULTS: In patient non-responders, we identified enrichment of the glycolysis pathway, specifically of the gene encoding the rate-limiting enzyme PKM2. We identified four HCC cell lines which recapitulated a TACE responder-like and non-responder-like phenotype. PKM2 knockdown in HCC cell lines demonstrated a less proliferative and aggressive phenotype as well as improved drug sensitivity to both doxorubicin and cisplatin. In vitro TACE model demonstrated that TACE non-responder-like cells overcame therapeutic resistance and rendered them susceptible to therapy through PKM2 knockdown. Lastly, we obtained similar results using a pharmacologic PKM2 inhibitor, shikonin in both cell lines, and PDC organoids.
CONCLUSION: Elevated PKM2 is associated with treatment resistance and abbreviated survival in patients receiving TACE. Elevated PKM2 in vitro is associated with increased utilization of the glycolysis pathway, resulting in oxygen independent cell metabolism. Through PKM2 knockdown as well as with pharmacologic inhibition with shikonin, non-responder cells can be reprogrammed to act as responders and could improve TACE efficacy in patients.
|