10 | ||
1 |
1 | ||
6 | ||
2 | ||
1 | ||
1 |
9 | ||
4 | ||
3 |
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
4 | ||
2 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
Pyrazole-Based Lactate Dehydrogenase Inhibitors with Optimized Cell Activity and Pharmacokinetic Properties.J Med Chem , (63), 10984-11011, 2020. Article Pubmed Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.
|
Molecular basis for activation of lecithin:cholesterol acyltransferase by a compound that increases HDL cholesterol.Manthei KA, Yang SM, Baljinnyam B, Chang L, Glukhova A, Yuan W, Freeman LA, Maloney DJ, Schwendeman A, Remaley AT, Jadhav A, Tesmer JJElife , (7), 2018. Article Pubmed Lecithin:cholesterol acyltransferase (LCAT) and LCAT-activating compounds are being investigated as treatments for coronary heart disease (CHD) and familial LCAT deficiency (FLD). Herein we report the crystal structure of human LCAT in complex with a potent piperidinylpyrazolopyridine activator and an acyl intermediate-like inhibitor, revealing LCAT in an active conformation. Unlike other LCAT activators, the piperidinylpyrazolopyridine activator binds exclusively to the membrane-binding domain (MBD). Functional studies indicate that the compound does not modulate the affinity of LCAT for HDL, but instead stabilizes residues in the MBD and facilitates channeling of substrates into the active site. By demonstrating that these activators increase the activity of an FLD variant, we show that compounds targeting the MBD have therapeutic potential. Our data better define the substrate binding site of LCAT and pave the way for rational design of LCAT agonists and improved biotherapeutics for augmenting or restoring reverse cholesterol transport in CHD and FLD patients.
|
Predicting novel therapies and targets: Regulation of Notch3 by the bromodomain protein BRD4.Villar-Prados A, Wu SY, Court KA, Ma S, LaFargue C, Chowdhury MA, Engelhardt MI, Ivan C, Ram PT, Wang Y, Baggerly K, Rodriguez-Aguayo C, Lopez-Berestein G, Yang SM, Maloney DJ, Yoshioka M, Strovel JW, Roszik J, Sood AKMol. Cancer Ther. , 2018. Article Pubmed BACKGROUND: Systematic approaches for accurate re-purposing of targeted therapies are needed. We developed and aimed to biologically validate our Therapy Predicting Tool (TPT) for the re-purposing of targeted therapies for specific tumor types by testing the role of Bromodomain and Extra-Terminal motif inhibitors (BETis) in inhibiting BRD4 function and downregulating Notch3 signaling in ovarian cancer.
METHODS: Utilizing established ovarian cancer pre-clinical models, we carried out in vitro and in vivo studies using clinically relevant BETis to determine their therapeutic effect and impact on Notch3 signaling.
RESULTS: Treatment with BETis or siRNA mediated BRD4 knockdown resulted in decreased cell viability, reduced cell proliferation and increased cell apoptosis in vitro. In vivo with orthotopic mouse models demonstrated that treatment with BETi decreased tumor growth. Additionally, knockdown of BRD4 with doxycycline inducible shRNA increased survival up to 50% (p < 0.001). Treatment with either BETis or BRD4 siRNA decreased Notch3 expression both in vitro and in vivo. BRD4 inhibition also decreased the expression of NOTCH3 targets, including HES1. Chromatin immunoprecipitation revealed that BRD4 was present at the NOTCH3 promoter.
CONCLUSION: Our findings provide biological validation for the TPT by demonstrating that BETis can be an effective therapeutic for ovarian cancer by downregulating Notch3 expression.
IMPACT: The TPT could rapidly identify candidate drugs for ovarian or other cancers along with novel companion biomarkers.
|
A new series of quinazoline-based analogs as potent bromodomain-containing protein 4 (BRD4) inhibitors is described. The structure-activity relationships on 2- and 4-position of quinazoline ring, and the substitution at 6-position that mimic the acetylated lysine are discussed. A co-crystallized structure of 48 (CN750) with BRD4 (BD1) including key inhibitor-protein interactions is also highlighted. Together with preliminary rodent pharmacokinetic results, a new lead (65, CN427) is identified which is suitable for further lead optimization.
|
A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano Luciferase.Martinez N, Asawa RR, Cyr MG, Zakharov A, Urban DJ, Roth J, Wallgren E, Klumpp-Thomas C, Coussens NP, Rai Bantukallu G, Yang SM, Hall M, Marugan J, Simeonov A, Henderson MSci Rep , (8), 9472, 2018. Article Pubmed Assessment of the interactions between a drug and its protein target in a physiologically relevant cellular environment constitutes a major challenge in the pre-clinical drug discovery space. The Cellular Thermal Shift Assay (CETSA) enables such an assessment by quantifying the changes in the thermal stability of proteins upon ligand binding in intact cells. Here, we present the development and validation of a homogeneous, standardized, target-independent, and high-throughput (384- and 1536-well formats) CETSA platform that uses a split Nano Luciferase approach (SplitLuc CETSA). The broad applicability of the assay was demonstrated for diverse targets, and its performance was compared with independent biochemical and cell-based readouts using a set of well-characterized inhibitors. Moreover, we investigated the utility of the platform as a primary assay for high-throughput screening. The SplitLuc CETSA presented here enables target engagement studies for medium and high-throughput applications. Additionally, it provides a rapid assay development and screening platform for targets where phenotypic or other cell-based assays are not readily available.
|
Discovery of Orally Bioavailable, Quinoline-Based Aldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors with Potent Cellular Activity.Yang SM, Martinez N, Yasgar A, Danchik C, Johansson C, Wang Y, Baljinnyam B, Wang A, Xu X, Shah P, Cheff D, Wang XS, Roth J, Lal-Nag M, Dunford JE, Oppermann U, Vasiliou V, Simeonov A, Jadhav A, Maloney DJJ. Med. Chem. , 2018. Article Pubmed Aldehyde dehydrogenases (ALDHs) are responsible for the metabolism of aldehydes (exogenous and endogenous) and possess vital physiological and toxicological functions in areas such as CNS, inflammation, metabolic disorders, and cancers. Overexpression of certain ALDHs (e.g., ALDH1A1) is an important biomarker in cancers and cancer stem cells (CSCs) indicating the potential need for the identification and development of small molecule ALDH inhibitors. Herein, a newly designed series of quinoline-based analogs of ALDH1A1 inhibitors is described. Extensive medicinal chemistry optimization and biological characterization led to the identification of analogs with significantly improved enzymatic and cellular ALDH inhibition. Selected analogs, e.g., 86 (NCT-505) and 91 (NCT-506), demonstrated target engagement in a cellular thermal shift assay (CETSA), inhibited the formation of 3D spheroid cultures of OV-90 cancer cells, and potentiated the cytotoxicity of paclitaxel in SKOV-3-TR, a paclitaxel resistant ovarian cancer cell line. Lead compounds also exhibit high specificity over other ALDH isozymes and unrelated dehydrogenases. The in vitro ADME profiles and pharmacokinetic evaluation of selected analogs are also highlighted.
|
DDB2 represses ovarian cancer cell dedifferentiation by suppressing ALDH1A1.Cui T, Srivastava AK, Han C, Wu D, Wani N, Liu L, Gao Z, Qu M, Zou N, Zhang X, Yi P, Yu J, Bell EH, Yang SM, Maloney DJ, Zheng Y, Wani AA, Wang QECell Death Dis , (9), 561, 2018. Article Pubmed Cancer stem cells (CSCs), representing the root of many solid tumors including ovarian cancer, have been implicated in disease recurrence, metastasis, and therapeutic resistance. Our previous study has demonstrated that the CSC subpopulation in ovarian cancer can be limited by DNA damage-binding protein 2 (DDB2). Here, we demonstrated that the ovarian CSC subpopulation can be maintained via cancer cell dedifferentiation, and DDB2 is able to suppress this non-CSC-to-CSC conversion by repression of ALDH1A1 transcription. Mechanistically, DDB2 binds to the ALDH1A1 gene promoter, facilitating the enrichment of histone H3K27me3, and competing with the transcription factor C/EBPβ for binding to this region, eventually inhibiting the promoter activity of the ALDH1A1 gene. The de-repression of ALDH1A1 expression contributes to DDB2 silencing-augmented non-CSC-to-CSC conversion and expansion of the CSC subpopulation. We further showed that treatment with a selective ALDH1A1 inhibitor blocked DDB2 silencing-induced expansion of CSCs, and halted orthotopic xenograft tumor growth. Together, our data demonstrate that DDB2, functioning as a transcription repressor, can abrogate ovarian CSC properties by downregulating ALDH1A1 expression.
|
Discovery and Optimization of Potent, Cell-Active Pyrazole-Based Inhibitors of Lactate Dehydrogenase (LDH).Rai Bantukallu G, Brimacombe K, Mott BT, Urban DJ, Hu X, Yang SM, Lee TD, Cheff D, Kouznetsova J, Benavides GA, Pohida K, Kuenstner EJ, Luci D, Lukacs CM, Davies DR, Dranow DM, Zhu H, Sulikowski G, Moore WJ, Stott GM, Flint AJ, Hall M, Darley-Usmar VM, Neckers LM, Dang CV, Waterson AG, Simeonov A, Jadhav A, Maloney DJJ. Med. Chem. , (60), 9184-9204, 2017. Article Pubmed We report the discovery and medicinal chemistry optimization of a novel series of pyrazole-based inhibitors of human lactate dehydrogenase (LDH). Utilization of a quantitative high-throughput screening paradigm facilitated hit identification, while structure-based design and multiparameter optimization enabled the development of compounds with potent enzymatic and cell-based inhibition of LDH enzymatic activity. Lead compounds such as 63 exhibit low nM inhibition of both LDHA and LDHB, submicromolar inhibition of lactate production, and inhibition of glycolysis in MiaPaCa2 pancreatic cancer and A673 sarcoma cells. Moreover, robust target engagement of LDHA by lead compounds was demonstrated using the cellular thermal shift assay (CETSA), and drug-target residence time was determined via SPR. Analysis of these data suggests that drug-target residence time (off-rate) may be an important attribute to consider for obtaining potent cell-based inhibition of this cancer metabolism target.
|
A High-Content Assay Enables the Automated Screening and Identification of Small Molecules with Specific ALDH1A1-Inhibitory Activity.Yasgar A, Titus SA, Wang Y, Danchik C, Yang SM, Vasiliou V, Jadhav A, Maloney DJ, Simeonov A, Martinez NPLoS ONE , (12), e0170937, 2017. Article Pubmed Aldehyde dehydrogenase enzymes (ALDHs) have a broad spectrum of biological activities through the oxidation of both endogenous and exogenous aldehydes. Increased expression of ALDH1A1 has been identified in a wide-range of human cancer stem cells and is associated with cancer relapse and poor prognosis, raising the potential of ALDH1A1 as a therapeutic target. To facilitate quantitative high-throughput screening (qHTS) campaigns for the discovery, characterization and structure-activity-relationship (SAR) studies of small molecule ALDH1A1 inhibitors with cellular activity, we show herein the miniaturization to 1536-well format and automation of a high-content cell-based ALDEFLUOR assay. We demonstrate the utility of this assay by generating dose-response curves on a comprehensive set of prior art inhibitors as well as hundreds of ALDH1A1 inhibitors synthesized in house. Finally, we established a screening paradigm using a pair of cell lines with low and high ALDH1A1 expression, respectively, to uncover novel cell-active ALDH1A1-specific inhibitors from a collection of over 1,000 small molecules.
|
A High-Throughput Screen Identifies 2,9-Diazaspiro[5.5]Undecanes as Inducers of the Endoplasmic Reticulum Stress Response with Cytotoxic Activity in 3D Glioma Cell Models.Martinez N, Rai Bantukallu G, Yasgar A, Lea WA, Sun H, Wang Y, Luci D, Yang SM, Nishihara K, Takeda S, Sagor M, Earnshaw I, Okada T, Mori K, Wilson K, Riggins GJ, Xia M, Grimaldi M, Jadhav A, Maloney DJ, Simeonov APLoS ONE , (11), e0161486, 2016. Article Pubmed The endoplasmic reticulum (ER) is involved in Ca2+ signaling and protein folding. ER Ca2+ depletion and accumulation of unfolded proteins activate the molecular chaperone GRP78 (glucose-regulated protein 78) which in turn triggers the ER stress response (ERSR) pathway aimed to restore ER homeostasis. Failure to adapt to stress, however, results in apoptosis. We and others have shown that malignant cells are more susceptible to ERSR-induced apoptosis than their normal counterparts, implicating the ERSR as a potential target for cancer therapeutics. Predicated on these findings, we developed an assay that uses a GRP78 biosensor to identify small molecule activators of ERSR in glioma cells. We performed a quantitative high-throughput screen (qHTS) against a collection of ~425,000 compounds and a comprehensive panel of orthogonal secondary assays was formulated for stringent compound validation. We identified novel activators of ERSR, including a compound with a 2,9-diazaspiro[5.5]undecane core, which depletes intracellular Ca2+ stores and induces apoptosis-mediated cell death in several cancer cell lines, including patient-derived and 3D cultures of glioma cells. This study demonstrates that our screening platform enables the identification and profiling of ERSR inducers with cytotoxic activity and advocates for characterization of these compound in in vivo models.
|