89 | ||
41 | ||
6 | ||
2 | ||
2 |
6 | ||
6 | ||
10 | ||
14 | ||
25 | ||
11 | ||
8 | ||
11 | ||
10 | ||
9 | ||
3 | ||
11 | ||
4 | ||
1 |
61 | ||
59 | ||
31 | ||
17 | ||
6 | ||
5 | ||
4 | ||
4 | ||
1 |
55 | ||
26 | ||
22 | ||
20 | ||
16 | ||
14 | ||
13 | ||
12 | ||
11 | ||
11 | ||
11 | ||
10 | ||
9 | ||
9 | ||
8 | ||
7 | ||
7 | ||
7 | ||
6 | ||
6 |
10 | ||
8 | ||
7 | ||
7 | ||
5 | ||
4 | ||
4 | ||
4 | ||
3 | ||
3 | ||
3 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 |
Characterization of human pregnane X receptor activators identified from a screening of the Tox21 compound library.Lynch C, Sakamuru S, Huang R, Niebler J, Ferguson SS, Xia MBiochem Pharmacol , 114368, 2020. Article Pubmed The pregnane X receptor (PXR; NR1I2) is an important nuclear receptor whose main function is to regulate enzymes within drug metabolism. The main drug metabolizing enzyme regulated by PXR, cytochrome P450 (CYP) 3A4, accounts for the metabolism of nearly 50% of all marketed drugs. Recently, PXR has also been identified as playing a role in energy homeostasis, immune response, and cancer. Due to its interaction with these important roles, alongside its drug-drug interaction function, it is imperative to identify compounds which can modulate PXR. In this study, we screened the Tox21 10,000 compound collection to identify hPXR agonists using a stable hPXR-Luc HepG2 cell line. A pharmacological study in the presence of a PXR antagonist was performed to confirm the activity of the chosen potential hPXR agonists in the same cells. Finally, metabolically competent cell lines - HepaRG and HepaRG-PXR-Knockout (KO) - were used to further confirm the potential PXR activators. We identified a group of structural clusters and singleton compounds which included potentially novel hPXR agonists. Of the 21 selected compounds, 11 potential PXR activators significantly induced CYP3A4 mRNA expression in HepaRG cells. All 11 of these compounds lost their induction when treating HepaRG-PXR-KO cells, confirming their PXR activation. Etomidoline presented as a potentially selective agonist of PXR. In conclusion, the current study has identified 11 compounds as potentially novel or not well-characterized PXR activators. These compounds should further be studied for their potential effects on drug metabolism and drug-drug interactions due to the immense implications of being a PXR agonist.
|
Systematic Identification of Molecular Targets and Pathways Related to Human Organ Level Toxicity.Xu T, Wu L, Xia M, Simeonov A, Huang RChem Res Toxicol , 2020. Article Pubmed The mechanisms leading to organ level toxicities are poorly understood. In this study, we applied an integrated approach to deduce the molecular targets and biological pathways involved in chemically induced toxicity for eight common human organ level toxicity end points (carcinogenicity, cardiotoxicity, developmental toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, reproductive toxicity, and skin toxicity). Integrated analysis of in vitro assay data, molecular targets and pathway annotations from the literature, and toxicity-molecular target associations derived from text mining, combined with machine learning techniques, were used to generate molecular targets for each of the organ level toxicity end points. A total of 1516 toxicity-related genes were identified and subsequently analyzed for biological pathway coverage, resulting in 206 significant pathways (p-value <0.05), ranging from 3 (e.g., developmental toxicity) to 101 (e.g., skin toxicity) for each toxicity end point. This study presents a systematic and comprehensive analysis of molecular targets and pathways related to various in vivo toxicity end points. These molecular targets and pathways could aid in understanding the biological mechanisms of toxicity and serve as a guide for the design of suitable in vitro assays for more efficient toxicity testing. In addition, these results are complementary to the existing adverse outcome pathway (AOP) framework and can be used to aid in the development of novel AOPs. Our results provide abundant testable hypotheses for further experimental validation.
|
In vitro methods which incorporate metabolic capability into the assays allow us to assess the activity of metabolites from their parent compounds. These methods can be applied into high-throughput screening (HTS) platforms, thereby increasing the speed to identify compounds that become active via the metabolism process. HTS was originally used in the pharmaceutical industry and now is also used in academic settings to evaluate biological activity and/or toxicity of chemicals. Although most chemicals are metabolized in our body, many HTS assays lack the capability to determine compound activity via metabolism. To overcome this problem, several in vitro metabolic methods have been applied to an HTS format. In this review, we describe in vitro metabolism methods and their application in HTS assays, as well as discuss the future perspectives of HTS with metabolic activity. Each in vitro metabolism method has advantages and disadvantages. For instance, the S9 mix has a full set of liver metabolic enzymes, but it displays high cytotoxicity in cell-based assays. In vitro metabolism requires liver fractions or the use of other metabolically capable systems, including primary hepatocytes or recombinant enzymes. Several newly developed in vitro metabolic methods, including HepaRG cells, three-dimensional (3D) cell models, and organ-on-a-chip technology, will also be discussed. These newly developed in vitro metabolism approaches offer significant progress in dissecting biological processes, developing drugs, and making toxicology studies quicker and more efficient.
|
Methylene blue is a potent and broad-spectrum inhibitor against Zika virus in vitro and in vivo.Li Z, Lang Y, Sakamuru S, Samrat S, Trudeau N, Kuo L, Rugenstein N, Tharappel A, D'Brant L, Koetzner CA, Hu S, Zhang J, Huang R, Kramer LD, Butler D, Xia M, Li HEmerg Microbes Infect , (9), 2404-2416, 2020. Article Pubmed Many flaviviruses including the Dengue virus (DENV), Zika virus (ZIKV), West Nile virus, Yellow Fever virus, and Japanese encephalitis virus are significant human pathogens, unfortunately without any specific therapy. Here, we demonstrate that methylene blue, an FDA-approved drug, is a broad-spectrum and potent antiviral against Zika virus and Dengue virus both in vitro and in vivo. We found that methylene blue can considerably inhibit the interactions between viral protease NS3 and its NS2B co-factor, inhibit viral protease activity, inhibit viral growth, protect 3D mini-brain organoids from ZIKV infection, and reduce viremia in a mouse model. Mechanistic studies confirmed that methylene blue works in both entry and post entry steps, reduces virus production in replicon cells and inhibited production of processed NS3 protein. Overall, we have shown that methylene blue is a potent antiviral for management of flavivirus infections, particularly for Zika virus. As an FDA-approved drug, methylene blue is well-tolerated for human use. Therefore, methylene blue represents a promising and easily developed therapy for management of infections by ZIKV and other flaviviruses.
|
Two-Dimensional Cellular and Three-Dimensional Bio-Printed Skin Models to Screen Topical-Use Compounds for Irritation Potential.Wei Z, Liu X, Ooka M, Zhang L, Song MJ, Huang R, Kleinstreuer NC, Simeonov A, Xia M, Ferrer-Alegre MFront Bioeng Biotechnol , (8), 109, 2020. Article Pubmed Assessing skin irritation potential is critical for the safety evaluation of topical drugs and other consumer products such as cosmetics. The use of advanced cellular models, as an alternative to replace animal testing in the safety evaluation for both consumer products and ingredients, is already mandated by law in the European Union (EU) and other countries. However, there has not yet been a large-scale comparison of the effects of topical-use compounds in different cellular skin models. This study assesses the irritation potential of topical-use compounds in different cellular models of the skin that are compatible with high throughput screening (HTS) platforms. A set of 451 topical-use compounds were first tested for cytotoxic effects using two-dimensional (2D) monolayer models of primary neonatal keratinocytes and immortalized human keratinocytes. Forty-six toxic compounds identified from the initial screen with the monolayer culture systems were further tested for skin irritation potential on reconstructed human epidermis (RhE) and full thickness skin (FTS) three-dimensional (3D) tissue model constructs. Skin irritation potential of the compounds was assessed by measuring tissue viability, trans-epithelial electrical resistance (TEER), and secretion of cytokines interleukin 1 alpha (IL-1α) and interleukin 18 (IL-18). Among known irritants, high concentrations of methyl violet and methylrosaniline decreased viability, lowered TEER, and increased IL-1α secretion in both RhE and FTS models, consistent with irritant properties. However, at low concentrations, these two compounds increased IL-18 secretion without affecting levels of secreted IL-1α, and did not reduce tissue viability and TEER, in either RhE or FTS models. This result suggests that at low concentrations, methyl violet and methylrosaniline have an allergic potential without causing irritation. Using both HTS-compatible 2D cellular and 3D tissue skin models, together with irritation relevant activity endpoints, we obtained data to help assess the irritation effects of topical-use compounds and identify potential dermal hazards.
|
Predictive Models for Human Organ Toxicity Based on In Vitro Bioactivity Data and Chemical Structure.Xu T, Ngan D, Ye L, Xia M, Xie HQ, Zhao B, Simeonov A, Huang RChem. Res. Toxicol. , (33), 731-741, 2020. Article Pubmed Traditional toxicity testing reliant on animal models is costly and low throughput, posing a significant challenge with the increasing numbers of chemicals that humans are exposed to in the environment. The purpose of this investigation was to build optimal prediction models for various human in vivo/organ-level toxicity end points (extracted from ChemIDPlus) using chemical structure and Tox21 in vitro quantitative high-throughput screening (qHTS) bioactivity assay data. Several supervised machine learning algorithms were applied to model 14 human toxicity end points pertaining to vascular, kidney, ureter and bladder, and liver organ systems. Three metrics were used to evaluate model performance: area under the receiver operating characteristic curve (AUC-ROC), balanced accuracy (BA), and Matthews correlation coefficient (MCC). The top four models, with AUC-ROC values >0.8, were derived for endocrine (0.90 ± 0.00), musculoskeletal (0.88 ± 0.02), peripheral nerve and sensation (0.85 ± 0.01), and brain and coverings (0.83 ± 0.02) toxicities, whereas the best model AUC-ROC values were >0.7 for the remaining 10 toxicities. Model performance was found to be dependent on the specific data set, model type, and feature selection method used. In addition, chemical structure and assay data showed different levels of contribution to the prediction of different toxicity end points. Although in vitro assay data, when combined with chemical structure, slightly improved the predictive accuracy for most end points (11 out of 14), a noteworthy finding was the near equal success of the structure-only models, which do not require Tox21 qHTS screening data, and the relatively poor performance of assay-only models. Thus, the top-performing structure-only models from this study could be applied for hazard screening of large sets of chemicals for potential human toxicity, whereas the largest assay contributions to models (i.e., cellular targets) could be used, along with the top-contributing structural features, to provide insight into toxicity mechanisms.
|
Systems Modeling of Developmental Vascular Toxicity.Saili KS, Franzosa JA, Baker NC, Ellis-Hutchings RG, Settivari RS, Carney EW, Spencer R, Zurlinden TJ, Kleinstreuer NC, Li S, Xia M, Knudsen TBCurr Opin Toxicol , (15), 55-63, 2019. Article Pubmed The more than 80,000 chemicals in commerce present a challenge for hazard assessments that toxicity testing in the 21st century strives to address through high-throughput screening (HTS) assays. Assessing chemical effects on human development adds an additional layer of complexity to the screening, with a need to capture complex and dynamic events essential for proper embryo-fetal development. HTS data from ToxCast/Tox21 informs systems toxicology models, which incorporate molecular targets and biological pathways into mechanistic models describing the effects of chemicals on human cells, 3D organotypic culture models, and small model organisms. Adverse Outcome Pathways (AOPs) provide a useful framework for integrating the evidence derived from these in silico and in vitro systems to inform chemical hazard characterization. To illustrate this formulation, we have built an AOP for developmental toxicity through a mode of action linked to embryonic vascular disruption (Aop43). Here, we review the model for quantitative prediction of developmental vascular toxicity from ToxCast HTS data and compare the HTS results to functional vascular development assays in complex cell systems, virtual tissues, and small model organisms. ToxCast HTS predictions from several published and unpublished assays covering different aspects of the angiogenic cycle were generated for a test set of 38 chemicals representing a range of putative vascular disrupting compounds (pVDCs). Results boost confidence in the capacity to predict adverse developmental outcomes from HTS in vitro data and model computational dynamics for in silico reconstruction of developmental systems biology. Finally, we demonstrate the integration of the AOP and developmental systems toxicology to investigate the unique modes of action of two angiogenesis inhibitors.
|
Pyrazole-4-Carboxamide (YW2065): A Therapeutic Candidate for Colorectal Cancer via Dual Activities of Wnt/β-Catenin Signaling Inhibition and AMP-Activated Protein Kinase (AMPK) Activation.Yang W, Li Y, Ai Y, Obianom ON, Guo D, Yang H, Sakamuru S, Xia M, Shu Y, Xue FJ. Med. Chem. , (62), 11151-11164, 2019. Article Pubmed Dysregulation of the Wnt/β-catenin signaling pathway has been widely recognized as a pathogenic mechanism for colorectal cancer (CRC). Although numerous Wnt inhibitors have been developed, they commonly suffer from toxicity and unintended effects. Moreover, concerns have been raised in targeting this pathway because of its critical roles in maintaining stem cells and regenerating tissues and organs. On the basis of the anthelmintic drug pyrvinium and previous lead FX1128, we have developed a compound YW2065 (1c) which demonstrated excellent anti-CRC effects in vitro and in vivo. YW2065 achieves its inhibitory activity for Wnt signaling by stabilizing Axin-1, a scaffolding protein that regulates proteasome degradation of β-catenin. Simultaneously, YW2065 also led to the activation of the tumor suppressor AMPK, providing an additional anticancer mechanism. In addition, YW2065 showed favorable pharmacokinetic properties without obvious toxicity. The anti-CRC effect of YW2065 was highlighted by its promising efficacy in a mice xenograft model.
|
Review of high-content screening applications in toxicology.Li S, Xia MArch. Toxicol. , (93), 3387-3396, 2019. Article Pubmed High-content screening (HCS) technology combining automated microscopy and quantitative image analysis can address biological questions in academia and the pharmaceutical industry. Various HCS experimental applications have been utilized in the research field of in vitro toxicology. In this review, we describe several HCS application approaches used for studying the mechanism of compound toxicity, highlight some challenges faced in the toxicological community, and discuss the future directions of HCS in regards to new models, new reagents, data management, and informatics. Many specialized areas of toxicology including developmental toxicity, genotoxicity, developmental neurotoxicity/neurotoxicity, hepatotoxicity, cardiotoxicity, and nephrotoxicity will be examined. In addition, several newly developed cellular assay models including induced pluripotent stem cells (iPSCs), three-dimensional (3D) cell models, and tissues-on-a-chip will be discussed. New genome-editing technologies (e.g., CRISPR/Cas9), data analyzing tools for imaging, and coupling with high-content assays will be reviewed. Finally, the applications of machine learning to image processing will be explored. These new HCS approaches offer a huge step forward in dissecting biological processes, developing drugs, and making toxicology studies easier.
|
Identification and Profiling of Environmental Chemicals That Inhibit the TGFβ/SMAD Signaling Pathway.Wei Z, Sakamuru S, Zhang L, Zhao J, Huang R, Kleinstreuer NC, Chen Y, Shu Y, Knudsen TB, Xia MChem. Res. Toxicol. , (32), 2433-2444, 2019. Article Pubmed The transforming growth factor beta (TGFβ) superfamily of secreted signaling molecules and their cognate receptors regulate cell fate and behaviors relevant to many developmental and disease processes. Disruption of TGFβ signaling during embryonic development can, for example, affect morphogenesis and differentiation through complex pathways that may be SMAD (Small Mothers Against Decapentaplegic) dependent or SMAD independent. In the present study, the SMAD Binding Element (SBE)-beta lactamase (bla) HEK 293T cell line, which responds to the activation of the SMAD2/3/4 complex, was used in a quantitative high-throughput screening (qHTS) assay to identify potential TGFβ disruptors in the Tox21 10K compound library. From the primary screening we identified several kinase inhibitors, organometallic compounds, and dithiocarbamates (DTCs) that inhibited TGFβ1-induced SMAD signaling of reporter gene activation independent of cytotoxicity. Counterscreen of SBE antagonists on human embryonic neural stem cells demonstrated cytotoxicity, providing additional evidence to support evaluation of these compounds for developmental toxicity. We profiled the inhibitory patterns of putative SBE antagonists toward other developmental signaling pathways, including wingless-related integration site (WNT), retinoic acid α receptor (RAR), and sonic hedgehog (SHH). The profiling results from SBE-bla assay identify chemicals that disrupt TGFβ/SMAD signaling as part of an integrated qHTS approach for prioritizing putative developmental toxicants.
|