3 | ||
1 |
2 | ||
2 | ||
1 | ||
2 | ||
1 |
2 | ||
2 | ||
1 | ||
1 |
4 | ||
4 | ||
3 | ||
3 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
3 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
The Platform Vector Gene Therapies Project: Increasing the Efficiency of Adeno-Associated Virus Gene Therapy Clinical Trial Startup.Brooks P, Ottinger E, Portero D, Lomash RM, Alimardanov A, Terse P, Xu X, Chandler RJ, Geist Hauserman J, Esposito E, Bönnemann CG, Venditti CP, Austin C, Pariser A, Lo DHum Gene Ther , (31), 1034-1042, 2020. Article Pubmed |
Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury.Wang X, Zhou T, Maynard GD, Terse P, Cafferty WB, Kocsis JD, Strittmatter SMBrain , 2020. Article Pubmed After CNS trauma such as spinal cord injury, the ability of surviving neural elements to sprout axons, reorganize neural networks and support recovery of function is severely restricted, contributing to chronic neurological deficits. Among limitations on neural recovery are myelin-associated inhibitors functioning as ligands for neuronal Nogo receptor 1 (NgR1). A soluble decoy (NgR1-Fc, AXER-204) blocks these ligands and provides a means to promote recovery of function in multiple preclinical rodent models of spinal cord injury. However, the safety and efficacy of this reagent in non-human primate spinal cord injury and its toxicological profile have not been described. Here, we provide evidence that chronic intrathecal and intravenous administration of NgR1-Fc to cynomolgus monkey and to rat are without evident toxicity at doses of 20 mg and greater every other day (≥2.0 mg/kg/day), and far greater than the projected human dose. Adult female African green monkeys underwent right C5/6 lateral hemisection with evidence of persistent disuse of the right forelimb during feeding and right hindlimb during locomotion. At 1 month post-injury, the animals were randomized to treatment with vehicle (n = 6) or 0.10-0.17 mg/kg/day of NgR1-Fc (n = 8) delivered via intrathecal lumbar catheter and osmotic minipump for 4 months. One animal was removed from the study because of surgical complications of the catheter, but no treatment-related adverse events were noted in either group. Animal behaviour was evaluated at 6-7 months post-injury, i.e. 1-2 months after treatment cessation. The use of the impaired forelimb during spontaneous feeding and the impaired hindlimb during locomotion were both significantly greater in the treatment group. Tissue collected at 7-12 months post-injury showed no significant differences in lesion size, fibrotic scar, gliosis or neuroinflammation between groups. Serotoninergic raphespinal fibres below the lesion showed no deficit, with equal density on the lesioned and intact side below the level of the injury in both groups. Corticospinal axons traced from biotin-dextran-amine injections in the left motor cortex were equally labelled across groups and reduced caudal to the injury. The NgR1-Fc group tissue exhibited a significant 2-3-fold increased corticospinal axon density in the cervical cord below the level of the injury relative to the vehicle group. The data show that NgR1-Fc does not have preclinical toxicological issues in healthy animals or safety concerns in spinal cord injury animals. Thus, it presents as a potential therapeutic for spinal cord injury with evidence for behavioural improvement and growth of injured pathways in non-human primate spinal cord injury.
|
Preclinical toxicity evaluation of JD5037, a peripherally restricted CB1 receptor inverse agonist, in rats and dogs for treatment of nonalcoholic steatohepatitis.Kale VP, Gibbs S, Taylor JA, Zmarowski A, Novak J, Patton K, Sparrow B, Gorospe J, Anand S, Cinar R, Kunos G, Chorvat RJ, Terse PRegul. Toxicol. Pharmacol. , (109), 104483, 2019. Article Pubmed JD5037 is a novel peripherally restricted CB1 receptor (CB1R) inverse agonist being developed for the treatment of visceral obesity and its metabolic complications, including nonalcoholic fatty liver disease and dyslipidemia. JD5037 was administered by oral gavage at 10, 40, and 150 mg/kg/day dose levels for up to 34 days to Sprague Dawley rats, and at 5, 20, and 75 mg/kg/day dose levels for 28 consecutive days to Beagle dogs. In rats, higher incidences of stereotypic behaviors were observed in 10 mg/kg females and 40 mg/kg males, and slower responses for reflex and sensory tests were observed only in males at 10 and 40 mg/kg during neurobehavioral testing. Sporadic minimal incidences of decreased activity (males) and seizures (both sexes) were observed in rats during daily clinical observations, without any clear dose-relationship. Male dogs at 75 mg/kg during treatment period, but not recovery period, had an increased incidence of gut associated lymphoid tissue hyperplasia and inflammation in the intestine. In both species, highest dose resulted in lower AUCs indicative of non-linear kinetics. Free access to food increased the plasma AUC∞ by ~4.5-fold at 20 mg/kg in dogs, suggesting presence of food may help in systemic absorption of JD5037 in dogs. Based on the study results, 150 mg/kg/day in rats, and 20 and 75 mg/kg/day doses in male and female dogs, respectively, were determined to be the no-observed-adverse-effect-levels (NOAELs).
|
Nonclinical safety assessment of PF614: A novel TAAP prodrug of oxycodone for chronic pain indication.Joshi PS, Sanakkayala N, Kirkpatrick L, Terse PRegul. Toxicol. Pharmacol. , (108), 104433, 2019. Article Pubmed PF614, a novel trypsin activated abuse protection (TAAP) prodrug of oxycodone, is being studied as chronic pain analgesic with extended release and abuse resistant properties. A series of nonclinical safety studies were conducted to support PF614 introduction to clinical trials. Ames assays (PF614 and its metabolites), comet assay (PF614 ≤ 50 mg/kg/day oral gavage in rats) and micronucleus assay (PF614 ≤ 175 mg/kg/day oral gavage in rats) were negative. hERG assay IC50 for PF614 was ≥300 μM. PF614 (0.1 and 10 μM) showed a low permeability in Caco-2 cells (≤1.17 x 10-6 cm/s) and was not a P-gp or BCRP substrate or inhibitor. The mean percent unbound PF614 among all concentrations in plasma ranged from 91.2 to 98.4, 79.4 to 100, and 52.9-79.9% in rat, dog, and human, respectively. Also, PF614 was metabolically stable in rat, dog, and human hepatocytes with no metabolites identified. Safety pharmacology study in dog indicated moderately lower heart rate at ≥ 2 mg/kg oral gavage doses. Toxicity studies of PF614 in rat and dog with daily oral doses of 25 and 18 mg/kg, respectively, for 14 Days were well tolerated with favorable safety profile supporting its further clinical evaluation.
|
Intravenous toxicity and toxicokinetics of an HDL mimetic, Fx-5A peptide complex, in cynomolgus monkeys.Bourdi M, Amar M, Remaley AT, Terse PRegul. Toxicol. Pharmacol. , (100), 59-67, 2018. Article Pubmed Fx-5A peptide complex (Fx-5A), a High Density Lipoproteins (HDL) mimetic, has been shown to reduce atherosclerosis. The safety and toxicokinetics of Fx-5A administered IV by 30 min infusion at 8, 25 or 75 mg/kg body weight or vehicle, once every other day for 27 days, were assessed in cynomolgus monkeys. The Fx-5A was well tolerated at all doses. At the highest dose, there were statistically significant effects on hematology and clinical chemistry parameters that were considered non-adverse. Dose-dependent recoverable non-adverse erythrocytes morphological changes (acanthocytes, echinocytes, spherocytes, microcytes, and/or schistocytes) were observed. Fx-5A was not hemolytic in in-vitro fresh NHP or human blood assay. There were no Fx-5A-related statistically significant changes for any cardiovascular function, ECG or respiratory parameters, when compared to control. In addition, there were no Fx-5A-related effects on organ weights, macroscopic or microscopic endpoints. Finally, Fx-5A exhibited sporadic non-appreciable detection of anti-Fx-5A antibodies and a dose-dependent linear toxicokinetics with T1/2 value ranges from 2.7 to 6.2 h. In conclusion, the No Observed Adverse Effect Level was considered to be 75 mg/kg/day with associated exposures average Cmax and AUC0-last of 453 μg/mL and 2232 h μg/mL, respectively, on Day 27.
|
Safety, pharmacokinetics and sialic acid production after oral administration of N-acetylmannosamine (ManNAc) to subjects with GNE myopathy.Xu X, Wang A, Latham LL, Celeste F, Ciccone C, Malicdan MC, Goldspiel B, Terse P, Cradock J, Yang N, Yorke S, McKew JC, Gahl WA, Huizing M, Carrillo NMol. Genet. Metab. , (122), 126-134, 2017. Article Pubmed GNE myopathy is a rare, autosomal recessive, inborn error of sialic acid metabolism, caused by mutations in GNE, the gene encoding UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase. The disease manifests as an adult-onset myopathy characterized by progressive skeletal muscle weakness and atrophy. There is no medical therapy available for this debilitating disease. Hyposialylation of muscle glycoproteins likely contributes to the pathophysiology of this disease. N-acetyl-D-mannosamine (ManNAc), an uncharged monosaccharide and the first committed precursor in the sialic acid biosynthetic pathway, is a therapeutic candidate that prevents muscle weakness in the mouse model of GNE myopathy. We conducted a first-in-human, randomized, placebo-controlled, double-blind, single-ascending dose study to evaluate safety and pharmacokinetics of ManNAc in GNE myopathy subjects. Single doses of 3 and 6g of oral ManNAc were safe and well tolerated; 10g was associated with diarrhea likely due to unabsorbed ManNAc. Oral ManNAc was absorbed rapidly and exhibited a short half-life (~2.4h). Following administration of a single dose of ManNAc, there was a significant and sustained increase in plasma unconjugated free sialic acid (Neu5Ac) (Tmax of 8-11h). Neu5Ac levels remained above baseline 48h post-dose in subjects who received a dose of 6 or 10g. Given that Neu5Ac is known to have a short half-life, the prolonged elevation of Neu5Ac after a single dose of ManNAc suggests that intracellular biosynthesis of sialic acid was restored in subjects with GNE myopathy, including those homozygous for mutations in the kinase domain. Simulated plasma concentration-time profiles support a dosing regimen of 6g twice daily for future clinical trials.
|
Evaluation of genetic toxicity of 6-diazo-5-oxo-l-norleucine (DON).Kulkarni RM, Dakoulas EW, Miller KE, Terse PToxicol. Mech. Methods , (27), 518-527, 2017. Article Pubmed DON (6-diazo-5-oxo-l-norleucine), a glutamine antagonist, was demonstrated to exhibit analgesic, antibacterial, antiviral and anticancer properties. The study was performed to characterize its in vitro and in vivo genetic toxicity potential. DON was tested in the bacterial reverse mutation assay (Ames test) using Salmonella typhimurium tester strains (TA98, TA100, TA1535 and TA1537) and Escherichia coli tester strain (WP2 uvrA) with and without S9 and also with reductive S9. In addition, DON was tested for the chromosome aberrations in Chinese hamster ovary (CHO) cells with or without S9 to evaluate the clastogenic potential. Furthermore, DON was also evaluated for its in vivo clastogenic activity by detecting micronuclei in polychromatic erythrocyte (PCE) cells in bone marrow collected from the male mice dosed intravenously with 500, 100, 10, 1 and 0.1 mg/kg at 24 and 48-h post-dose. The Ames mutagenicity assay showed no positive mutagenic responses. However, the in vitro chromosome aberration assay demonstrated dose dependent statistically positive increase in structural aberrations at 4 and 20-h exposure without S9 and also at 4-h exposure with S9. The in vivo micronucleus assay also revealed a statistically positive response for micronucleus formation at 500, 100 and 10 mg/kg at 24 and 48-h post-dose. Thus, DON appears to be negative in the Ames test but positive in the in vitro chromosome aberration assay and in the in vivo micronucleus assay. In conclusion, the results indicate DON is a genotoxic compound with a plausible epigenetic mechanism.
|
Collaborative development of 2-hydroxypropyl-β-cyclodextrin for the treatment of Niemann-Pick type C1 disease.Ottinger E, Kao ML, Carrillo-Carrasco N, Yanjanin N, Shankar RK, Janssen M, Brewster M, Scott I, Xu X, Cradock J, Terse P, Dehdashti SJ, Marugan J, Zheng W, Portilla Weingarten L, Hubbs A, Pavan WJ, Heiss J, Vite CH, Walkley SU, Ory DS, Silber SA, Porter FD, Austin C, McKew JCCurr Top Med Chem , (14), 330-9, 2014. Pubmed In 2010, the National Institutes of Health (NIH) established the Therapeutics for Rare and Neglected Diseases (TRND) program within the National Center for Advancing Translational Sciences (NCATS), which was created to stimulate drug discovery and development for rare and neglected tropical diseases through a collaborative model between the NIH, academic scientists, nonprofit organizations, and pharmaceutical and biotechnology companies. This paper describes one of the first TRND programs, the development of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) for the treatment of Niemann-Pick disease type C1 (NPC1). NPC is a neurodegenerative, autosomal recessive rare disease caused by a mutation in either the NPC1 (about 95% of cases) or the NPC2 gene (about 5% of cases). These mutations affect the intracellular trafficking of cholesterol and other lipids, which leads to a progressive accumulation of unesterified cholesterol and glycosphingolipids in the CNS and visceral organs. Affected individuals typically exhibit ataxia, swallowing problems, seizures, and progressive impairment of motor and intellectual function in early childhood, and usually die in adolescence. There is no disease modifying therapy currently approved for NPC1 in the US. A collaborative drug development program has been established between TRND, public and private partners that has completed the pre-clinical development of HP-β-CD through IND filing for the current Phase I clinical trial that is underway. Here we discuss how this collaborative effort helped to overcome scientific, clinical and financial challenges facing the development of new drug treatments for rare and neglected diseases, and how it will incentivize the commercialization of HP-β-CD for the benefit of the NPC patient community.
|