8 | ||
1 |
5 | ||
2 | ||
7 |
6 | ||
4 | ||
2 |
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
3 | ||
2 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
The SARS-CoV-2 Cytopathic Effect Is Blocked by Lysosome Alkalizing Small Molecules.Gorshkov K, Chen C, Bostwick R, Rasmussen L, Tran BN, Cheng Y, Xu M, Pradhan M, Henderson M, Zhu W, Oh E, Susumu K, Wolak M, Shamim K, Huang W, Hu X, Shen M, Klumpp-Thomas C, Itkin Z, Shinn P, Carlos de la Torre J, Simeonov A, Michael S, Hall M, Lo D, Zheng WACS Infect Dis , 2020. Article Pubmed Understanding the SARS-CoV-2 virus' pathways of infection, virus-host-protein interactions, and mechanisms of virus-induced cytopathic effects will greatly aid in the discovery and design of new therapeutics to treat COVID-19. Chloroquine and hydroxychloroquine, extensively explored as clinical agents for COVID-19, have multiple cellular effects including alkalizing lysosomes and blocking autophagy as well as exhibiting dose-limiting toxicities in patients. Therefore, we evaluated additional lysosomotropic compounds to identify an alternative lysosome-based drug repurposing opportunity. We found that six of these compounds blocked the cytopathic effect of SARS-CoV-2 in Vero E6 cells with half-maximal effective concentration (EC50) values ranging from 2.0 to 13 μM and selectivity indices (SIs; SI = CC50/EC50) ranging from 1.5- to >10-fold. The compounds (1) blocked lysosome functioning and autophagy, (2) prevented pseudotyped particle entry, (3) increased lysosomal pH, and (4) reduced (ROC-325) viral titers in the EpiAirway 3D tissue model. Consistent with these findings, the siRNA knockdown of ATP6V0D1 blocked the HCoV-NL63 cytopathic effect in LLC-MK2 cells. Moreover, an analysis of SARS-CoV-2 infected Vero E6 cell lysate revealed significant dysregulation of autophagy and lysosomal function, suggesting a contribution of the lysosome to the life cycle of SARS-CoV-2. Our findings suggest the lysosome as a potential host cell target to combat SARS-CoV-2 infections and inhibitors of lysosomal function could become an important component of drug combination therapies aimed at improving treatment and outcomes for COVID-19.
|
Development of a High-Throughput Homogeneous AlphaLISA Drug Screening Assay for the Detection of SARS-CoV-2 Nucleocapsid.Gorshkov K, Chen C, Xu M, Carlos de la Torre J, Martinez-Sobrido L, Moran T, Zheng WACS Pharmacol Transl Sci , (3), 1233-1241, 2020. Article Pubmed The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in urgent need of therapeutic options. High-throughput screening (HTS) offers an opportunity to rapidly identify such compounds. In this work, we have developed a homogeneous cell-based HTS system using AlphaLISA detection technology for the SARS-CoV-2 nucleocapsid protein (NP). Our assay measures both recombinant and endogenous NP from viral lysates and tissue culture supernatants (TCS) in a sandwich-based format using two monoclonal antibodies against the NP analyte. Viral NP was detected and quantified in both tissue culture supernatants and cell lysates, with large differences observed between 24 and 48 h of infection. We simulated viral infection by spiking recombinant NP into 384-well plates with live Vero-E6 cells and were able to detect the NP with high sensitivity and a large dynamic range. Antiviral agents that inhibit either viral cell entry or replication decrease the AlphaLISA NP signal. Thus, this assay can be used for high-throughput screening of small molecules and biologics in the fight against the COVID-19 pandemic.
|
Identifying SARS-CoV-2 Entry Inhibitors through Drug Repurposing Screens of SARS-S and MERS-S Pseudotyped Particles.Chen C, Xu M, Pradhan M, Gorshkov K, Petersen JD, Straus MR, Zhu W, Shinn P, Guo H, Shen M, Klumpp-Thomas C, Michael S, Zimmerberg J, Zheng W, Whittaker GRACS Pharmacol Transl Sci , (3), 1165-1175, 2020. Article Pubmed While vaccine development will hopefully quell the global pandemic of COVID-19 caused by SARS-CoV-2, small molecule drugs that can effectively control SARS-CoV-2 infection are urgently needed. Here, inhibitors of spike (S) mediated cell entry were identified in a high throughput screen of an approved drugs library with SARS-S and MERS-S pseudotyped particle entry assays. We discovered six compounds (cepharanthine, abemaciclib, osimertinib, trimipramine, colforsin, and ingenol) to be broad spectrum inhibitors for spike-mediated entry. This work could contribute to the development of effective treatments against the initial stage of viral infection and provide mechanistic information that might aid the design of new drug combinations for clinical trials for COVID-19 patients.
|
N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling.Xu J, Wan Z, Tang M, Lin Z, Jiang S, Ji L, Gorshkov K, Mao Q, Xia S, Cen D, Zheng J, Liang X, Cai XMol Cancer , (19), 163, 2020. Article Pubmed BACKGROUND AND AIMS: Accumulating evidence suggests that the primary and acquired resistance of hepatocellular carcinoma (HCC) to sorafenib is mediated by multiple molecular, cellular, and microenvironmental mechanisms. Understanding these mechanisms will enhance the likelihood of effective sorafenib therapy.
METHODS: In vitro and in vivo experiments were performed and clinical samples and online databases were acquired for clinical investigation.
RESULTS: In this study, we found that a circular RNA, circRNA-SORE, which is up-regulated in sorafenib-resistant HCC cells, was necessary for the maintenance of sorafenib resistance, and that silencing circRNA-SORE substantially increased the efficacy of sorafenib-induced apoptosis. Mechanistic studies determined that circRNA-SORE sequestered miR-103a-2-5p and miR-660-3p by acting as a microRNA sponge, thereby competitively activating the Wnt/β-catenin pathway and inducing sorafenib resistance. The increased level of circRNA-SORE in sorafenib-resistant cells resulted from increased RNA stability. This was caused by an increased level of N6-methyladenosine (m6A) at a specific adenosine in circRNA-SORE. In vivo delivery of circRNA-SORE interfering RNA by local short hairpin RNA lentivirus injection substantially enhanced sorafenib efficacy in animal models.
CONCLUSIONS: This work indicates a novel mechanism for maintaining sorafenib resistance and is a proof-of-concept study for targeting circRNA-SORE in sorafenib-treated HCC patients as a novel pharmaceutical intervention for advanced HCC.
|
Quantum Dot-Conjugated SARS-CoV-2 Spike Pseudo-Virions Enable Tracking of Angiotensin Converting Enzyme 2 Binding and Endocytosis.Gorshkov K, Susumu K, Chen J, Xu M, Pradhan M, Zhu W, Hu X, Breger JC, Wolak M, Oh EACS Nano , (14), 12234-12247, 2020. Article Pubmed The first step of SARS-CoV-2 infection is binding of the spike protein's receptor binding domain to the host cell's ACE2 receptor on the plasma membrane. Here, we have generated a versatile imaging probe using recombinant Spike receptor binding domain conjugated to fluorescent quantum dots (QDs). This probe is capable of engaging in energy transfer quenching with ACE2-conjugated gold nanoparticles to enable monitoring of the binding event in solution. Neutralizing antibodies and recombinant human ACE2 blocked quenching, demonstrating a specific binding interaction. In cells transfected with ACE2-GFP, we observed immediate binding of the probe on the cell surface followed by endocytosis. Neutralizing antibodies and ACE2-Fc fully prevented binding and endocytosis with low nanomolar potency. Importantly, we will be able to use this QD nanoparticle probe to identify and validate inhibitors of the SARS-CoV-2 Spike and ACE2 receptor binding in human cells. This work enables facile, rapid, and high-throughput cell-based screening of inhibitors for coronavirus Spike-mediated cell recognition and entry.
|
Phosphocyclocreatine is the dominant form of cyclocreatine in control and creatine transporter deficiency patient fibroblasts.Gorshkov K, Wang A, Sun W, Fisher E, Frigeni M, Singleton M, Thorne N, Class B, Huang W, Longo N, Do MT, Ottinger E, Xu X, Zheng WPharmacol Res Perspect , (7), e00525, 2019. Article Pubmed Creatine transporter deficiency (CTD) is a metabolic disorder resulting in cognitive, motor, and behavioral deficits. Cyclocreatine (cCr), a creatine analog, has been explored as a therapeutic strategy for the treatment of CTD. We developed a rapid, selective, and accurate HILIC ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to simultaneously quantify the intracellular concentrations of cCr, creatine (Cr), creatine-d3 (Cr-d3), phosphocyclocreatine (pcCr), and phosphocreatine (pCr). Using HILIC-UPLC-MS/MS, we measured cCr and Cr-d3 uptake and their conversion to the phosphorylated forms in primary human control and CTD fibroblasts. Altogether, the data demonstrate that cCr enters cells and its dominant intracellular form is pcCr in both control and CTD patient cells. Therefore, cCr may replace creatine as a therapeutic strategy for the treatment of CTD.
|
Zika Virus: Origins, Pathological Action, and Treatment Strategies.Gorshkov K, Shiryaev SA, Fertel S, Lin YW, Huang CT, Pinto A, Farhy C, Strongin AY, Zheng W, Terskikh AVFront Microbiol , (9), 3252, 2018. Article Pubmed The Zika virus (ZIKV) global epidemic prompted the World Health Organization to declare it a 2016 Public Health Emergency of International Concern. The overwhelming experience over the past several years teaches us that ZIKV and the associated neurological complications represent a long-term world-wide challenge to public health. Although the number of ZIKV cases in the Western Hemisphere has dropped since 2016, the need for basic research and anti-ZIKV drug development remains strong. Re-emerging viruses like ZIKV are an ever-present threat in the 21st century where fast transcontinental travel lends itself to viral epidemics. Here, we first present the origin story for ZIKV and review the rapid progress researchers have made toward understanding of the ZIKV pathology and in the design, re-purposing, and testing-particularly in vivo-drug candidates for ZIKV prophylaxis and therapy ZIKV. Quite remarkably, a short, but intensive, drug-repurposing effort has already resulted in several readily available FDA-approved drugs that are capable of effectively combating the virus in infected adult mouse models and, most importantly, in both preventing maternal-fetal transmission and severe microcephaly in newborns in pregnant mouse models.
|
Induced pluripotent stem cells for neural drug discovery.Farkhondeh Kalat A, Li R, Gorshkov K, Chen KG, Might M, Rodems S, Lo D, Zheng WDrug Discov. Today , 2019. Article Pubmed Neurological diseases such as Alzheimer's disease and Parkinson's disease are growing problems, as average life expectancy is increasing globally. Drug discovery for neurological disease remains a major challenge. Poor understanding of disease pathophysiology and incomplete representation of human disease in animal models hinder therapeutic drug development. Recent advances with induced pluripotent stem cells (iPSCs) have enabled modeling of human diseases with patient-derived neural cells. Utilizing iPSC-derived neurons advances compound screening and evaluation of drug efficacy. These cells have the genetic backgrounds of patients that more precisely model disease-specific pathophysiology and phenotypes. Neural cells derived from iPSCs can be produced in a large quantity. Therefore, application of iPSC-derived human neurons is a new direction for neuronal drug discovery.
|
Quantitative Chemotherapeutic Profiling of Gynecologic Cancer Cell Lines Using Approved Drugs and Bioactive Compounds.Gorshkov K, Sima N, Sun W, Lu B, Huang W, Travers J, Klumpp-Thomas C, Michael S, Xu T, Huang R, Lee E, Cheng X, Zheng WTransl Oncol , (12), 441-452, 2018. Article Pubmed Heterogeneous response to chemotherapy is a major issue for the treatment of cancer. For most gynecologic cancers including ovarian, cervical, and placental, the list of available small molecule therapies is relatively small compared to options for other cancers. While overall cancer mortality rates have decreased in the United States as early diagnoses and cancer therapies have become more effective, ovarian cancer still has low survival rates due to the lack of effective treatment options, drug resistance, and late diagnosis. To understand chemotherapeutic diversity in gynecologic cancers, we have screened 7914 approved drugs and bioactive compounds in 11 gynecologic cancer cell lines to profile their chemotherapeutic sensitivity. We identified two HDAC inhibitors, mocetinostat and entinostat, as pan-gynecologic cancer suppressors with IC50 values within an order of magnitude of their human plasma concentrations. In addition, many active compounds identified, including the non-anticancer drugs and other compounds, diversely inhibited the growth of three gynecologic cancer cell groups and individual cancer cell lines. These newly identified compounds are valuable for further studies of new therapeutics development, synergistic drug combinations, and new target identification for gynecologic cancers. The results also provide a rationale for the personalized chemotherapeutic testing of anticancer drugs in treatment of gynecologic cancer.
|
Neural stem cells for disease modeling and evaluation of therapeutics for Tay-Sachs disease.Vu M, Li R, Baskfield A, Lu B, Farkhondeh Kalat A, Gorshkov K, Motabar O, Beers J, Chen G, Zou J, Espejo-Mojica AJ, Rodríguez-López A, Alméciga-Díaz CJ, Barrera LA, Jiang X, Ory DS, Marugan J, Zheng WOrphanet J Rare Dis , (13), 152, 2018. Article Pubmed BACKGROUND: Tay-Sachs disease (TSD) is a rare neurodegenerative disorder caused by autosomal recessive mutations in the HEXA gene on chromosome 15 that encodes β-hexosaminidase. Deficiency in HEXA results in accumulation of GM2 ganglioside, a glycosphingolipid, in lysosomes. Currently, there is no effective treatment for TSD.
RESULTS: We generated induced pluripotent stem cells (iPSCs) from two TSD patient dermal fibroblast lines and further differentiated them into neural stem cells (NSCs). The TSD neural stem cells exhibited a disease phenotype of lysosomal lipid accumulation. The Tay-Sachs disease NSCs were then used to evaluate the therapeutic effects of enzyme replacement therapy (ERT) with recombinant human Hex A protein and two small molecular compounds: hydroxypropyl-β-cyclodextrin (HPβCD) and δ-tocopherol. Using this disease model, we observed reduction of lipid accumulation by employing enzyme replacement therapy as well as by the use of HPβCD and δ-tocopherol.
CONCLUSION: Our results demonstrate that the Tay-Sachs disease NSCs possess the characteristic phenotype to serve as a cell-based disease model for study of the disease pathogenesis and evaluation of drug efficacy. The enzyme replacement therapy with recombinant Hex A protein and two small molecules (cyclodextrin and tocopherol) significantly ameliorated lipid accumulation in the Tay-Sachs disease cell model.
|