3 |
1 | ||
2 |
2 | ||
2 | ||
2 |
2 | ||
1 |
Generation of an induced pluripotent stem cell line (TRNDi003-A) from a Noonan syndrome with multiple lentigines (NSML) patient carrying a p.Q510P mutation in the PTPN11 gene.Li R, Baskfield A, Lin Y, Beers J, Zou J, Liu C, Jaffré F, Roberts AE, Ottinger E, Kontaridis MI, Zheng WStem Cell Res , (34), 101374, 2019. Article Pubmed Noonan syndrome with multiple lentigines (NSML), formerly known as LEOPARD Syndrome, is a rare autosomal dominant disorder. Approximately 90% of NSML cases are caused by missense mutations in the PTPN11 gene which encodes the protein tyrosine phosphatase SHP2. A human induced pluripotent stem cell (iPSC) line was generated using peripheral blood mononuclear cells (PBMCs) from a patient with NSML that carries a gene mutation of p.Q510P on the PTPN11 gene using non-integrating Sendai virus technique. This iPSC line offers a useful resource to study the disease pathophysiology and a cell-based model for drug development to treat NSML.
|
Generation of an induced pluripotent stem cell line (TRNDi002-B) from a patient carrying compound heterozygous p.Q208X and p.G310G mutations in the NGLY1 gene.Li R, Pradhan M, Xu M, Baskfield A, Farkhondeh Kalat A, Cheng Y, Beers J, Zou J, Liu C, Might M, Rodems S, Zheng WStem Cell Res , (34), 101362, 2018. Article Pubmed NGLY1 deficiency is a rare genetic disease caused by mutations in the NGLY1 gene that encodes N-glycanase 1. The disease phenotype in patient cells is unclear. A human induced pluripotent stem cell (iPSC) line was generated from skin dermal fibroblasts of a patient with NGLY1 deficiency that has compound heterozygous mutations of a p.Q208X variant (c.622C > T) in exon 4 and a p.G310G variant (c.930C > T) in exon 6 of the NGLY1 gene. This iPSC line offers a useful resource to study the disease pathophysiology and a cell-based model for drug development to treat NGLY1 deficiency.
|
Neural stem cells for disease modeling and evaluation of therapeutics for Tay-Sachs disease.Vu M, Li R, Baskfield A, Lu B, Farkhondeh Kalat A, Gorshkov K, Motabar O, Beers J, Chen G, Zou J, Espejo-Mojica AJ, Rodríguez-López A, Alméciga-Díaz CJ, Barrera LA, Jiang X, Ory DS, Marugan J, Zheng WOrphanet J Rare Dis , (13), 152, 2018. Article Pubmed BACKGROUND: Tay-Sachs disease (TSD) is a rare neurodegenerative disorder caused by autosomal recessive mutations in the HEXA gene on chromosome 15 that encodes β-hexosaminidase. Deficiency in HEXA results in accumulation of GM2 ganglioside, a glycosphingolipid, in lysosomes. Currently, there is no effective treatment for TSD.
RESULTS: We generated induced pluripotent stem cells (iPSCs) from two TSD patient dermal fibroblast lines and further differentiated them into neural stem cells (NSCs). The TSD neural stem cells exhibited a disease phenotype of lysosomal lipid accumulation. The Tay-Sachs disease NSCs were then used to evaluate the therapeutic effects of enzyme replacement therapy (ERT) with recombinant human Hex A protein and two small molecular compounds: hydroxypropyl-β-cyclodextrin (HPβCD) and δ-tocopherol. Using this disease model, we observed reduction of lipid accumulation by employing enzyme replacement therapy as well as by the use of HPβCD and δ-tocopherol.
CONCLUSION: Our results demonstrate that the Tay-Sachs disease NSCs possess the characteristic phenotype to serve as a cell-based disease model for study of the disease pathogenesis and evaluation of drug efficacy. The enzyme replacement therapy with recombinant Hex A protein and two small molecules (cyclodextrin and tocopherol) significantly ameliorated lipid accumulation in the Tay-Sachs disease cell model.
|