43 | ||
1 | ||
1 |
16 | ||
4 | ||
14 | ||
5 | ||
16 | ||
4 | ||
1 | ||
1 | ||
1 | ||
1 |
26 | ||
23 | ||
20 | ||
4 | ||
2 | ||
1 | ||
1 |
10 | ||
8 | ||
6 | ||
5 | ||
5 | ||
4 | ||
4 | ||
3 | ||
3 | ||
3 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
1 |
7 | ||
3 | ||
3 | ||
3 | ||
3 | ||
2 | ||
2 | ||
2 | ||
2 | ||
2 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 | ||
1 |
The Fundamental Characteristics of a Translational Scientist.Gilliland CT, White J, Gee B, Kreeftmeijer-Vegter R, Bietrix F, Ussi AE, Hajduch M, Kocis P, Chiba N, Hirasawa R, Suematsu M, Bryans J, Newman S, Hall M, Austin CACS Pharmacol Transl Sci , (2), 213-216, 2019. Article Pubmed Translational science is defined as the field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process. Further development of the field is advanced by describing the key desirable characteristics of individuals who seek to uncover these principles to increase the efficiency and efficacy of translation. The members of Translation Together, a newly launched international collaborative effort to advance translational innovation, present here a consensus representation of the fundamental characteristics of a translational scientist. We invite all stakeholders to contribute in the ongoing efforts to develop the field and educate the next generation of translational scientists.
|
Cytotoxicity is a critical property in determining the fate of a small molecule in the drug discovery pipeline. Cytotoxic compounds are identified and triaged in both target-based and cell-based phenotypic approaches due to their off-target toxicity or on-target and on-mechanism toxicity for oncology and neurodegenerative targets. It is critical that chemical-induced cytotoxicity be reliably predicted before drug candidates advance to the late stage of development, or more ideally, before compounds are synthesized. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in NCATS annotated libraries against four 'normal' cell lines (HEK 293, NIH 3T3, CRL-7250 and HaCat) using CellTiter-Glo (CTG) technology and constructed highly predictive models to estimate cytotoxicity from chemical structures. There are 5,241 non-redundant compounds having unambiguous activities in the four different cell lines, among which 11.8% compounds exhibited cytotoxicity in two or more cell lines and are thus labelled cytotoxic. The support vector classification (SVC) models trained with 80% randomly selected molecules achieved the area under the receiver operating characteristic curve (AUC-ROC) of 0.88 on average for the remaining 20% compounds in the test sets in 10 repeating experiments. Application of under-sampling rebalancing method further improved the averaged AUC-ROC to 0.90. Analysis of structural features shared by cytotoxic compounds may offer medicinal chemists heuristic design ideas to eliminate undesirable cytotoxicity. The profiling of cytotoxicity of drug-like molecules with annotated primary mechanism of action (MOA) will inform on the roles played by different targets or pathways in cellular viability. The predictive models for cytotoxicity (accessible at https://tripod.nih.gov/web_adme/cytotox.html) provide the scientific community a fast yet reliable way to prioritize molecules with little or no cytotoxicity for downstream development.
|
Keeping It Clean: The Cell Culture Quality Control Experience at the National Center for Advancing Translational Sciences.Roth J, Lee TD, Cheff D, Gosztyla ML, Asawa RR, Danchik C, Michael S, Simeonov A, Klumpp-Thomas C, Wilson K, Hall MSLAS Discov , 2472555220911451, 2020. Article Pubmed Quality control monitoring of cell lines utilized in biomedical research is of utmost importance and is critical for the reproducibility of data. Two key pitfalls in tissue culture are 1) cell line authenticity and 2) Mycoplasma contamination. As a collaborative research institute, the National Center for Advancing Translational Sciences (NCATS) receives cell lines from a range of commercial and academic sources, which are adapted for high-throughput screening. Here, we describe the implementation of routine NCATS-wide Mycoplasma testing and short tandem repeat (STR) testing for cell lines. Initial testing identified a >10% Mycoplasma contamination rate. While the implementation of systematic testing has not fully suppressed Mycoplasma contamination rates, clearly defined protocols that include the immediate destruction of contaminated cell lines wherever possible has enabled rapid intervention and removal of compromised cell lines. Data for >2000 cell line samples tested over 3 years, and case studies are provided. STR testing of 186 cell lines with established STR profiles revealed only five misidentified cell lines, all of which were received from external labs. The data collected over the 3 years since implementation of this systematic testing demonstrate the importance of continual vigilance for rapid identification of "problem" cell lines, for ensuring reproducible data in translational science research.
|
Structure-Activity Relationship Study of Covalent Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors.Manz TD, Sivakumaren SC, Yasgar A, Hall M, Davis MI, Seo HS, Card JD, Ficarro SB, Shim H, Marto JA, Dhe-Paganon S, Sasaki AT, Boxer MB, Simeonov A, Cantley LC, Shen M, Zhang T, Ferguson FM, Gray NSACS Med Chem Lett , (11), 346-352, 2020. Article Pubmed Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are important molecular players in a variety of diseases, such as cancer. Currently available PI5P4K inhibitors are reversible small molecules, which may lack selectivity and sufficient cellular on-target activity. In this study, we present a new class of covalent pan-PI5P4K inhibitors with potent biochemical and cellular activity. Our designs are based on THZ-P1-2, a covalent PI5P4K inhibitor previously developed in our lab. Here, we report further structure-guided optimization and structure-activity relationship (SAR) study of this scaffold, resulting in compound 30, which retained biochemical and cellular potency, while demonstrating a significantly improved selectivity profile. Furthermore, we confirm that the inhibitors show efficient binding affinity in the context of HEK 293T cells using isothermal CETSA methods. Taken together, compound 30 represents a highly selective pan-PI5P4K covalent lead molecule.
|
Persistent Polyfunctional Chimeric Antigen Receptor T Cells That Target Glypican 3 Eliminate Orthotopic Hepatocellular Carcinomas in Mice.Li D, Li N, Zhang YF, Fu H, Feng M, Schneider D, Su L, Wu X, Zhou J, Mackay S, Kramer J, Duan Z, Yang H, Kolluri A, Hummer AM, Torres MB, Zhu H, Hall M, Luo X, Chen J, Wang Q, Abate-Daga D, Dropublic B, Hewitt SM, Orentas RJ, Greten TF, Ho MGastroenterology , 2020. Article Pubmed BACKGROUND & AIMS: Glypican 3 (GPC3) is an oncofetal antigen involved in Wnt-dependent cell proliferation that is highly expressed in hepatocellular carcinoma (HCC). We investigated whether the functions of chimeric antigen receptors (CARs) that target GPC3 are affected by their antibody-binding properties.
METHODS: We collected peripheral blood mononuclear cells from healthy donors and patients with HCC and used them to create CAR T cells, based on the hYP7 and HN3 antibodies, which have high affinities for the C-lobe and N-lobe of GPC3, respectively. NSG mice were given intraperitoneal injections of luciferase-expressing (Luc) Hep3B or HepG2 cells and after xenograft tumors formed, mice were given injections of saline or untransduced T cells (controls), or CAR (HN3) T cells or CAR (hYP7) T cells. In other NSG mice, HepG2-Luc or Hep3B-Luc cells were injected into liver, and after orthotopic tumors formed, mice were given 1 injection of CAR (hYP7) T cells or CD19 CAR T cells (control). We developed droplet digital PCR and genome sequencing methods to analyze persistent CAR T cells in mice.
RESULTS: Injections of CAR (hYP7) T cells eliminated tumors in 66% of mice by week 3, whereas CAR (HN3) T cells did not reduce tumor burden. Mice given CAR (hYP7) T cells remained tumor free after re-challenge with additional Hep3B cells. The CAR T cells induced perforin- and granzyme-mediated apoptosis and reduced levels of active β-catenin in HCC cells. Mice injected with CAR (hYP7) T cells had persistent expansion of T cells and subsets of polyfunctional CAR T cells via antigen-induced selection. These T cells were observed in the tumor microenvironment and spleen for up to 7 weeks after CAR T cell administration. Integration sites in pre-infusion CAR (HN3) and CAR (hYP7) T cells were randomly distributed, whereas integration into NUPL1 was detected in 3.9% of CAR (hYP7) T cells 5 weeks after injection into tumor-bearing mice and 18.1% of CAR (hYP7) T cells at week 7. There was no common site of integration in CAR (HN3) or CD19 CAR T cells from tumor-bearing mice.
CONCLUSIONS: In mice with xenograft or orthoptic liver tumors, CAR (hYP7) T cells eliminate GPC3-positive HCC cells, possibly by inducing perforin- and granzyme-mediated apoptosis or reducing Wnt signaling in tumor cells. GPC3-targeted CAR T cells might be developed for treatment of patients with HCC.
|
Dynamic Imaging of LDH Inhibition in Tumors Reveals Rapid In Vivo Metabolic Rewiring and Vulnerability to Combination Therapy.Oshima N, et al.Cell Rep , (30), 1798-1810.e4, 2020. Article Pubmed The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.
|
Evaluation of 11C-NR2B-SMe and its Enantiomers as PET Radioligands for Imaging the NR2B Subunit within the NMDA Receptor Complex in Rats.Cai L, Liow JS, Morse CL, Telu S, Davies R, Frankland MP, Zoghbi S, Cheng K, Hall M, Innis RB, Pike VJ. Nucl. Med. , 2020. Article Pubmed [S-Methyl-11C](±)-7-methoxy-3-(4-(4-(methylthio)phenyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol (11C-NR2B-SMe) and its enantiomers were synthesized as candidates for imaging the NR2B subunit within the N-methyl-D-aspartate receptor with positron emission tomography (PET). Methods: Brains were scanned with PET for 90 min after intravenous injection of one of the candidate radioligands into rats. To detect any NR2B specific binding of radioligand in brain, various pre-blocking or displacing agents were evaluated for their impact on the PET brain imaging data. Radiometabolites from brain and other tissues were measured ex vivo and in vitro. Results: Each radioligand gave high early whole brain uptake of radioactivity, followed by a brief fast decline and then a slow final decline. 11C-(S)-NR2B-SMe was studied extensively. Ex vivo measurements showed that radioactivity in rat brain at 30 min after radioligand injection was virtually unchanged radioligand. Only less lipophilic radiometabolites appeared in plasma. High-affinity NR2B ligands, Ro-25-6981, ifenprodil, and CO10124, showed increasing preblock of whole brain radioactivity retention with increasing dose (0.01 to 1.25 mg/kg, i.v.). Five σ1 antagonists (FTC146, BD1407, F3, F4, and NE100) and four σ1 agonists ((+)-pentazocine, (±)-PPCC, PRE-084, (+)-SKF10047) were ineffective preblocking agents, except FTC146 and F4 at high dose. Two potent σ1 receptor agonists, TC1 and SA4503, showed dose-dependent preblocking effects in the presence or absence of pharmacological σ1 receptor blockade with FTC146. Conclusion:11C-(S)-NR2B-SMe has adequate NR2B-specific PET signal in rat brain to warrant further evaluation in higher species. TC1 and SA4503 likely have off-target binding to NR2B in vivo.
|
Interaction of the N terminus of ADP-ribosylation factor with the PH domain of the GTPase-activating protein ASAP1 requires phosphatidylinositol 4,5-bisphosphate.Roy NS, Jian X, Soubias O, Zhai P, Hall JR, Dagher JN, Coussens NP, Jenkins LM, Luo R, Akpan IO, Hall M, Byrd RA, Yohe ME, Randazzo PAJ. Biol. Chem. , (294), 17354-17370, 2019. Article Pubmed Arf GAP with Src homology 3 domain, ankyrin repeat, and pleckstrin homology (PH) domain 1 (ASAP1) is a multidomain GTPase-activating protein (GAP) for ADP-ribosylation factor (ARF)-type GTPases. ASAP1 affects integrin adhesions, the actin cytoskeleton, and invasion and metastasis of cancer cells. ASAP1's cellular function depends on its highly-regulated and robust ARF GAP activity, requiring both the PH and the ARF GAP domains of ASAP1, and is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). The mechanistic basis of PIP2-stimulated GAP activity is incompletely understood. Here, we investigated whether PIP2 controls binding of the N-terminal extension of ARF1 to ASAP1's PH domain and thereby regulates its GAP activity. Using [Δ17]ARF1, lacking the N terminus, we found that PIP2 has little effect on ASAP1's activity. A soluble PIP2 analog, dioctanoyl-PIP2 (diC8PIP2), stimulated GAP activity on an N terminus-containing variant, [L8K]ARF1, but only marginally affected activity on [Δ17]ARF1. A peptide comprising residues 2-17 of ARF1 ([2-17]ARF1) inhibited GAP activity, and PIP2-dependently bound to a protein containing the PH domain and a 17-amino acid-long interdomain linker immediately N-terminal to the first β-strand of the PH domain. Point mutations in either the linker or the C-terminal α-helix of the PH domain decreased [2-17]ARF1 binding and GAP activity. Mutations that reduced ARF1 N-terminal binding to the PH domain also reduced the effect of ASAP1 on cellular actin remodeling. Mutations in the ARF N terminus that reduced binding also reduced GAP activity. We conclude that PIP2 regulates binding of ASAP1's PH domain to the ARF1 N terminus, which may partially regulate GAP activity.
|
The NCATS Pharmaceutical Collection: a 10-year update.Huang R, Zhu H, Shinn P, Ngan D, Ye L, Thakur A, Grewal G, Zhao T, Southall N, Hall M, Simeonov A, Austin CDrug Discov. Today , (24), 2341-2349, 2019. Article Pubmed The National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection (NPC), a comprehensive collection of clinically approved drugs, was made a public resource in 2011. Over the past decade, the NPC has been systematically profiled for activity across an array of pathways and disease models, generating an unparalleled amount of data. These data have not only enabled the identification of new repurposing candidates with several in clinical trials, but also uncovered new biological insights into drug targets and disease mechanisms. This retrospective provides an update on the NPC in terms of both successes and lessons learned. We also report our efforts in bringing the NPC up-to-date with drugs approved in recent years.
|
Fumarate hydratase (FH) is a metabolic enzyme that is part of the Krebs cycle and reversibly catalyzes the hydration of fumarate to malate. Mutations of the FH gene have been associated with fumarate hydratase deficiency (FHD), hereditary leiomyomatosis and renal cell cancer (HLRCC), and other diseases. Currently, there are no high-quality small-molecule probes for studying human FH. To address this, we developed a quantitative high-throughput screening (qHTS) FH assay and screened a total of 57,037 compounds from in-house libraries in dose-response. While no inhibitors of FH were confirmed, a series of phenyl-pyrrolo-pyrimidine-diones were identified as activators of human FH. These compounds were not substrates of FH, were inactive in a malate dehydrogenase counterscreen, and showed no detectable reduction-oxidation activity. The binding of two compounds from the series to human FH was confirmed by microscale thermophoresis. The low hit rate in this screening campaign confirmed that FH is a "tough target" to modulate, and the small-molecule activators of human FH reported here may serve as a starting point for further optimization and development into cellular probes of human FH and potential drug candidates.
|